PB93-206662

U.S. Department of Transportation

Federal Highway Administration Publication No. FHWA-RD-92-121 May 1993

Pavement Testing Facility– Phase 1 Final Report

Research and Development Turner-Fairbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 22101-2296

FOREWORD

In 1986, the Federal Highway Administration established the Pavement Testing Facility (PTF) at the Turner-Fairbank Highway Research Center in McLean, Virginia. The PTF is an outdoor pavement testing laboratory consisting of the Accelerated Loading Facility (ALF) pavement testing machine and several instrumented pavement test sections. The PTF provides the capability to evaluate pavement problems of high national concern.

This report summarizes the results of the accelerated pavement performance tests conducted with the ALF during the first phase of research at the PTF (October 1986 through April 1989). This report will be of interest to both practicing and research engineers dealing with flexible pavement performance. Other completed PTF reports include:

- FHWA-RD-88-059, Pavement Testing Facility Design and Construction
- FHWA-RD-88-060, Pavement Testing Facility Pavement Performance of the First Two Test Sections

• FHWA-RD-89-123, Pavement Testing Facility - Effects of Tire Pressure on Flexible Pavement Response and Performance.

Sufficient copies of this report are being distributed to provide one copy to each FHWA Region and Division, and one copy to each State highway agency. Direct distribution is being made to the division offices. Additional copies of this report and the above referenced reports are available from the National Technical Information Service (NTIS), U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.

Syron VI.

Byron N. Lord, Acting Director Office of Engineering and Highway Operations Research and Development

NOTICE

This Document is disseminated under the Sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or the use thereof. This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear herein only because they are considered essential to the object of the document.

Technical Report Documentation Page

. Report No.	2.	0	Catalog No.
	PB93-206662		
FHWA RD-92-121			
4. Title and Subtitle		5. Report Date	• May 1993
PAVEMENT TESTING FACILITY	PHASE 1 FINAL REPORT	6. Performing	Organization Code
		8. Performing	Organization Report
7. Author(s) Ramon Bonaquist, HNR-20			-
9. Performing Organization Name and Ac	odress		t No. (TRAIS)
Office of Engineering and Federal Highway Administr 6300 Georgetown Pike	1 Highway Operations R&D	11. Contract	
McLean, VA 22101-2296		13. Type of F	Report and Period Cov
12. Sponsoring Agency Name and Addree Office of Engineering and	1955 d Wighway Operations R&D		Final Report
Federal Highway Administ	ration	Octob	per 1986 - Apri
6300 Georgetown Pike McLean, VA 22101-2296		14. Sponsori	ng Agency Code
15. Supplementary Notes			
			• • • • • • • • • • • • • • • • • • •
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) t October, 1986.	th Center in McLean, vir mance of test pavements to of several instrumented testing machine. Formal 289. The report includes PTF test pavements. It data collection procedu ental, and pavement resp f research. Finally, an ted to assess the stre	during the first during the first a discussion of describes the res used at the bonse and perfor analysis of the	pose of this fa accelerated lo and the Accel the facility be st phase of res f the construct operation of t PTF. The repo rmance data co
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) to October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environmed during the first phase o testing data was conduct testing with the ALF mac	ed at the Federal High th Center in McLean, Virg mance of test pavements to f several instrumented testing machine. Formal 289. The report includes PTF test pavements. It data collection procedu ental, and pavement resp f research. Finally, an ted to assess the stre- chine.	during the first during the first a discussion of describes the res used at the bonse and perfor analysis of the	pose of this fa accelerated lo and the Accel the facility be st phase of res f the construct operation of t PTF. The repo rmance data co
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) t October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environmeduring the first phase o testing data was conduct testing with the ALF mac	ed at the Federal High th Center in McLean, Virg mance of test pavements to f several instrumented testing machine. Formal 289. The report includes PTF test pavements. It data collection procedu ental, and pavement resp f research. Finally, an ted to assess the stre chine. 18. District	way Administrate ginia. The purpose rafficked under test pavements operation of t during the first a discussion of describes the res used at the conse and perfor analysis of the ngths and weak	pose of this far accelerated lo and the Accel the facility be the facility be the construct operation of to PTF. The repormance data co accelerated poses of acce
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) t October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environme during the first phase o testing data was conduct testing with the ALF mac	ility	way Administrate ginia. The purpose rafficked under test pavements operation of t during the first a discussion of describes the res used at the ponse and perfor analysis of the ngths and weak withon Statement estrictions. The lable to the public	his document is
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) t October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environmeduring the first phase o testing data was conduct testing with the ALF mac	ility	way Administrate ginia. The purp rafficked under test pavements operation of t during the firs a discussion of describes the res used at the ponse and perfor analysis of the ngths and weak withon Statement estrictions. The lable to the pub- bal Technical	his document is blic through th
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) to October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environmeduring the first phase o testing data was conduct testing with the ALF mach 17. Key Words Accelerated Loading Fac Pavement Testing Pavement Performance Pavement Response	ility	way Administrate ginia. The purp rafficked under test pavements operation of t during the firs a discussion of describes the res used at the ponse and perfor analysis of the ngths and weak weak estrictions. The lable to the pub- bal Technical Sol, 5285 Port Ro	his document is blic through th
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) to October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environme during the first phase o testing data was conduct testing with the ALF mac 17. Key Words Accelerated Loading Fac Pavement Testing Pavement Performance Pavement Response Accelerated Testing	ed at the Federal High h Center in McLean, Virg mance of test pavements to if several instrumented testing machine. Formal lizes the work performed 089. The report includes PTF test pavements. It data collection procedurental, and pavement resp f research. Finally, and ted to assess the strechine. 18. District No re- avail Nation (NTI: Spring)	way Administrate ginia. The purpose rafficked under test pavements operation of t during the first a discussion of describes the res used at the ponse and perform analysis of the ngths and weak estrictions. The lable to the pub- onal Technical 35 5, 5285 Port Re- ngfield, Virgin:	his document is blic through th formation Service his 22161.
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) to October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environmeduring the first phase o testing data was conduct testing with the ALF mach 17. Key Words Accelerated Loading Fac Pavement Testing Pavement Performance Pavement Response	ility	way Administrate ginia. The purpose rafficked under test pavements operation of t during the first a discussion of describes the res used at the ponse and perform analysis of the ngths and weak estrictions. The lable to the pub- onal Technical 35 5, 5285 Port Re- ngfield, Virgin:	his document is blic through th
testing laboratory locat Fairbank Highway Researc is to quantify the perfor The facility consists o Loading Facility (ALF) to October, 1986. This report summari October 1986 to April, 19 instrumentation of the testing machine, and the summarizes the environme during the first phase o testing data was conduct testing with the ALF mac 17. Key Words Accelerated Loading Fac Pavement Testing Pavement Performance Pavement Response Accelerated Testing	ed at the Federal High h Center in McLean, Virg mance of test pavements to if several instrumented testing machine. Formal lizes the work performed 089. The report includes PTF test pavements. It data collection procedurental, and pavement resp f research. Finally, and ted to assess the strechine. 18. District No re- avail Nation (NTI: Spring)	way Administrate ginia. The purpose rafficked under test pavements operation of t during the first a discussion of describes the res used at the ponse and perform analysis of the ngths and weak estrictions. The lable to the pub- onal Technical 35 5, 5285 Port Re- ngfield, Virgin:	his document is blic through th formation Service his 22161.

			TRIC)		· · · · · · · · · · · · · · · · · · ·			
		O SI UNITS			APPROXIMATE CO	NVERSIONS F	ROM SI UNITS	
When You Know	Multiply By	To Find	Symbol	Symbol	When You Know	Multiply By	To Find S	Symbol
	LENGTH					LENGTH		
inches	25.4	millimeters	mm	mm	millimeters	0.039	inches	in
		+	m	1				ft
	1.61		m					yd mi
		RIGHTERS	кт	, Noti	NIGHTOLOGI 3		111103	••••
						AREA		
square inches	645.2	square millimeters	mm²	mm²	square millimeters	0.0016	square inches	in²
•		square meters	m²		•		square feet	ft²
		•	m²					ac
			ha [mi²
square miles		square kilometers	km²	KM*	square kilometers	-	square miles	
·	VOLUME					VOLUME	-	
fluid ounces	29.57	milliliters	mt	mi	milliliters	0.034	fluid ounces	floz
gallons	3.785	liters		1	liters	0.264	gallons	gal
		cubic meters	m ³	e س	cubic meters	35.71	cubic feet	ft³
cubic yards	0.765	cubic meters	m ³	m ³	cubic meters	1.307	cubic yards	yd ^p
Volumes greater than 10	00 I shall be shown in	ו m³.						
	MASS					MASS		
ounces	28.35	grams	a	g	grams	0.035	ounces	oz
pounds	0.454	kilograms		kg	kilograms	2.202	pounds	lb
short tons (2000 lb)	0.907	megagrams	Mg	Mg	megagrams	1.103	short tons (2000 l	b) T
TEMPE	RATURE (exact))			TEMP	ERATURE (exac	<u>7</u>)	
Fahrenheit	5(F-32)/9	Colcius	÷	-c	Celcius	1.80 + 22	- Eabronhoit	۰F
temperature	or (F-32)/1.8	temperature	Ŭ	Ŭ	temperature	1.00 + 32	temperature	· · ·
	UMINATION	·			IL	LUMINATION	-	
foot-candles	10.76	lux		İx	lux	0.0929	foot-candles	fc
foot-Lamberts	3.426	candela/m ²	cd/m²	cd/m²	candela/m²	0.2919	foot-Lamberts	fi
FORCE and PRESSURE or STRESS					FORCE and	PRESSURE or \$	STRESS	
poundforce	4.45	newtons	ы	N	newtons	0.225	-	lbf
poundforce per	6.89		kPa	kPa	kilopascals	0.145	poundforce per	
Doundiorce der	0.09	kilopascals		кеа				psi i
	APPROXIMATE C When You Know inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards /olumes greater than 10 ounces pounds short tons (2000 lb) TEMPEI Fahrenheit temperature ILLU foot-candles foot-Lamberts FORCE and P	APPROXIMATE CONVERSIONS T When You Know Multiply By LENGTH inches 25.4 feet 0.305 yards 0.914 miles 1.61 AREA square inches 645.2 square feet 0.093 square yards 0.836 acres 0.405 square miles 2.59 VOLUME fluid ounces 29.57 gallons 3.785 cubic feet 0.028 cubic feet 0.028 cubic feet 0.028 cubic yards 0.765 /olumes greater than 1000 I shall be shown in MASS ounces 28.35 pounds 0.454 short tons (2000 lb) 0.907 TEMPERATURE (exact) Fahrenheit 5(F-32)/9 temperature or (F-32)/1.8 ILLUMINATION foot-candles 10.76 foot-candles 10.76 foot-candles 10.76 foot-candles 10.76 foot-candles 10.76 foot-candles 10.76	APPROXIMATE CONVERSIONS TO SI UNITS When You Know Multiply By To Find LENGTH inches 25.4 millimeters feet 0.305 meters yards 0.914 meters miles 1.61 kilometers AREA square inches 645.2 square millimeters square feet 0.093 square meters square miles 2.59 square millimeters square miles 2.59 square millimeters square miles 2.59 square millimeters fluid ounces 29.57 milliliters gallons 3.785 liters cubic feet 0.028 cubic meters vOLUME fluid ounces 29.57 milliliters liters cubic feet 0.028 cubic meters volumes greater than 1000 I shall be shown in m ³ . MASS ounces 28.35 grams pounds 0.454 kilograms megagrams TEMPERATURE (exact) Fahrenheit 5(F-32)/9 Celcius temperature or (F-32)/1.8 temperature ILLUMINATION foot-candles 10.76 lux candela/m ² FORCE and PRESSURE or STRESS	APPROXIMATE CONVERSIONS TO SI UNITS When You Know Multiply By To Find Symbol LENGTH inches 25.4 millimeters m feet 0.305 meters m miles 1.51 kilometers km AREA square inches 645.2 square millimeters m ² square feet 0.093 square meters m ² square yards 0.836 square meters m ² square geater b.0.093 square meters m ² square geater b.0.093 square meters m ² square s 0.405 hectares ha square kilometers km ² VOLUME fluid ounces 29.57 milliliters ml gallons 3.785 liters l cubic feet 0.028 cubic meters m ³ v/olumes greater than 1000 I shall be shown in m ³ . MASS ounces 28.35 grams g pounds 0.454 kilograms kg megagrams Mg TEMPERATURE (exact) Fahrenheit 5(F-32)/1.8 Celcius °C temperature or (F-32)/1.8 Celcius °C temperature or (F-32)/1.8 Celcius °C temperature or (F-32)/1.8 Celcius 1 codic - Lamberts 3.426 candela/m ² cd/m ²	Site (MODJERIX VIEURIC) CONVER APPROXIMATE CONVERSIONS TO SI UNITS When You Know Multiply By To Find Symbol Inches 25.4 millimeters mm m inches 25.4 millimeters mm m yards 0.914 meters m m willing 1.61 kilometers km km AREA square inches 645.2 square millimeters mm² m² square grads 0.836 square meters m² m² grame deter ourget states square millimeters mm² m² square millimeters mm² m² square millimeters square millimeters mm² m² m² m² m² m² m² square millimeters mm² m² grame miles	APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CO When You Know Multiply By To Find Symbol When You Know LENGTH Symbol Symbol When You Know inches 25.4 millimeters mm meters yards 0.305 meters m m meters yards 0.914 meters m m meters square inches 645.2 square meters m ² m ² square meters square inches 645.2 square meters m ⁴ m ² square meters square inches 645.2 square meters m ⁴ m ² square meters square inches 0.405 sequare meters m ⁴ ha hectares square miles 2.59 square meters m ⁴ ha hectares square miles 2.57 milliliters ml ml milliliters gallons 3.785 liters 1 milliliters m ⁴ cubic reater 0.028 cubic meters m ³ cubic meters fuid ounces 28.35 grams	APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS F APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS F When You Know Multiply By To Find Symbol When You Know Multiply By LENGTH milimeters mm mm meters 0.039 inches 25.4 milimeters mm meters 0.039 yards 0.914 meters m m meters 0.039 Miles 1.51 kilometers m m meters 0.039 square inches 645.2 square meters m ² m ² m ² square inches 645.2 square meters m ² m ² m ² square inches 645.2 square meters m ² m ² square meters 1.05 square miles 2.59 square meters m ² m ² square meters 0.0016 square miles 2.957 millimiters ml m ² square meters 0.264 fold ounces 29.57 millimiters m ² m ² cubic meters 0.264 fold ounces 29.57 millimiters m ² m ² 0.035 <th< td=""><td>APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Inches 25.4 millimeters mm Multiply By To Find Importance Inches 25.4 millimeters mm meters 3.29 feet yards 0.914 meters meters 1.09 yards miles 1.61 kilometers millimeters 0.0016 square feet square inches 645.2 square meters millimeters 0.0016 square feet square miles 0.036 square meters 1.055 square feet square miles 0.465 square meters 1.165 square feet square miles 2.59 square meters 1.165 square miles UDUME millimeters millimeters 1.076 square miles Uncos 2.77 millimeters millimeters 1.076 galons 3.785 fillers n millimeters 3.377 galons 0.765 cubic meters 1.307</td></th<>	APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS APPROXIMATE CONVERSIONS TO SI UNITS APPROXIMATE CONVERSIONS FROM SI UNITS When You Know Multiply By To Find Symbol Symbol When You Know Multiply By To Find Inches 25.4 millimeters mm Multiply By To Find Importance Inches 25.4 millimeters mm meters 3.29 feet yards 0.914 meters meters 1.09 yards miles 1.61 kilometers millimeters 0.0016 square feet square inches 645.2 square meters millimeters 0.0016 square feet square miles 0.036 square meters 1.055 square feet square miles 0.465 square meters 1.165 square feet square miles 2.59 square meters 1.165 square miles UDUME millimeters millimeters 1.076 square miles Uncos 2.77 millimeters millimeters 1.076 galons 3.785 fillers n millimeters 3.377 galons 0.765 cubic meters 1.307

* SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised August 1992)

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION BACKGROUND PURPOSE AND SCOPE	1 1 1
Nondestructive Testing INSTRUMENTATION Environmental Pavement Response	3 3 3 6 11 11 21 22 27
ACCELERATED LOADING FACILITY PAVEMENT PERFORMANCE MONITORING Cracking Rutting Rutting Roughness Present Serviceability Index Nondestructive Testing (NDT) Postfailure Investigations ENVIRONMENTAL MONITORING	29 29 33 35 36 37 38 39 40
ENVIRONMENTAL PAVEMENT PERFORMANCE Loading Rutting, Cracking, Present Serviceability Index NDT and Pavement Responses Postfailure Investigations SUMMARY	41 42 44 49 55 59 64
	69 69 72

TABLE OF CONTENTS (continued)

APPENDIX A. CONSTRUCTION NONDESTRUCTIVE TESTING
APPENDIX B. ENVIRONMENTAL AND REFERENCE LOCATION NDT 79
APPENDIX C. LANE 1, SECTION 1 DATA 97
APPENDIX D. LANE 1, SECTION 2 DATA 101
APPENDIX E. LANE 1, SECTION 4 DATA 107
APPENDIX F. LANE 2, SECTION 1 DATA 109
APPENDIX G. LANE 2, SECTION 2 DATA 117
APPENDIX H. LANE 2, SECTION 3 DATA 123
APPENDIX I. LANE 2, SECTION 4 DATA 129
REFERENCES

. .

..

. . . .

LIST OF FIGURES

Figure

Page

1.	Pavement Testing Facility site plan.	4
2.	Design pavement cross sections.	5
З.	Variation of subgrade modulus with structural capacity.	20
4.	Strain gauges installed in phase 1 test sections.	23
5.	Schematic of retrofitted strain gauges.	25
6.	Photograph of surface profiler	26
7.	Photograph of the Accelerated Loading Facility.	30
8.	Geometry of the ALF dual wheel assembly	30
9.	ALF trolley assembly.	32
10.	Typical ALF loading.	32
11.	Location of phase 1 cracking and rutting data collection.	34
12.	Comparison of the sensitivity of crack measuring methods.	35
13.	Calculation of rut depth from pavement profile.	36
14.	Typical PSI history from phase 1 test.	38
15.	Photograph during postfailure investigation.	39
16.	Subgrade moisture contents during phase 1 research.	43
17.		43
18.		45
19.	Estimated subgrade moduli.	45
20.	Loading and temperature histories for the lane 1 performance tests.	47
21.	Loading and temperature histories for the lane 2 performance tests.	48
22.	Summary of lane 1 pavement performance	50
23.	Summary of lane 2 pavement performance.	51
24.	Distribution of rutting within lane 1, section 2.	52
25.	Distribution of cracking within lane 1, section 2.	52
26.	Phase 1 load damage relationship.	55
27.	Structural condition factor for lane 1 tests.	57
28.	Structural condition factor for lane 2 tests.	
29.	Cracking versus structural condition factor, phase 1 tests	
30.	Measured strains for lane 2, section 3 and lane 2, section 1	
31.	Ratio of measured to predicted strains for lane 2 section 3	
32.	Ratio of measured to predicted strains for lane 2, section 1	
33.	Schematic of measured strains and crack location	
34.	Postfailure profiles for lane 1.	
	Postfailure profiles for lane 2	
36.	Typical lane 2. section 1 transverse profiles	
28. 29. 30. 31. 32. 33. 34. 35.	Structural condition factor for lane 2 tests Cracking versus structural condition factor, phase 1 tests Measured strains for lane 2, section 3 and lane 2, section 1. Ratio of measured to predicted strains for lane 2, section 3. Ratio of measured to predicted strains for lane 2, section 1. Schematic of measured strains and crack location. Postfailure profiles for lane 1. Postfailure profiles for lane 2.	57 57 58 58 60 61 62 63 68

LIST OF TABLES

-

Tabl		
		Page
1.	Average layer thicknesses.	-
2.	Summary of subgrade characterization tests.	· 5
З.	Summary of subgrade soil resilient modulus models.	. 7
4.	Summary of crushed aggregate base characterization tests	9
5.	Summary of crushed aggregate base resilient modulus models	10
ъ.	Asphalt concrete job mix formulas and mixture composition.	12
7.	Asphalt cement properties.	40
8.	Summary of Marshall mix and extraction analyses.	11
9.	Summary of air voids and resilient modulus tests	4 8
10.	Summary of composite moduli from construction NDT data	16
	Average composite moduli	40
12.	Estimated in-situ subgrade moduli.	. 20
10.	Summary of phase 1 pavement tests.	. 41
15.	Load applications to 5 percent wheelpath cracking and 2.0 PSI loss.	. 53
16.		. 54
	Postfailure base course density and moisture contents. Postfailure subgrade density and moisture contents.	. 65
18.	Postfailure asphalt concrete air void contents.	. 66
19.	Construction subgrade nondestructive testing.	. 67
20.	Construction base nondestructive testing.	. 75
21.	Construction completed pavement nondestructive testing.	. 76
22.	Phase 1 environmental history	70
23.	Lane 1 reference location NDT data	04
24.	Lane 2 reference location NDT data	05
25.	Lane 1, section 1 loading and environemental history	07
26.	Lane I, section 1 cracking history.	07
27.	Lane I, section 1 rutting history.	00
28.		00
29.	Lane I, section I NDI data	00
30.	Lane 1, section 2 loading and environmental history	404
32.	Lane 1, section 2 cracking history.	. 102
33.		102
34.	Lane 1, section 2 PSI history.	. 103
35.	Lane 1, section 2 NDT data.	. 104
36.	Lane 1, section 4 loading and environmental history.	. 107
37.	Lane 1, section 4 cracking history.	. 107
38.	Lane 1, section 4 rutting history. Lane 1, section 4 PSI history.	. 107
39.	Lane 1, section 4 NDT data.	. 107
40.	Lane 2, Section 1 loading and environmental history	400
41.	Lane 2, section 1 cracking history.	140
		112

Å

LIST OF TABLES (continued)

<u>Table</u>

.

<u>Page</u>

.

43. 44.	Lane 2, section 1 NDT data.
45.	Lare 2, section 2 loading and environmental history
40.	Lane 2, Section 2 Cracking history.
41.	Laite 2, Section 2 rutting history.
48.	Lane Z, Section Z PSI history
49.	Lane 2, Section 2 NDT data
50.	Lane 2, section 3 loading and environmental history
91 .	Lane 2, Section 3 cracking history.
52.	Lane 2, section 3 rutting history.
53.	
54.	Lane 2, section 3 NDT data.
55.	Lane 2, section 4 loading and environmental history.
56.	Lane 2, Section 4 cracking history.
57.	Lane 2, Section 4 rutting history.
58.	Lane 2, Section 4 PSI history
59.	Lane 2, section 4 NDT data

.

CHAPTER 1. INTRODUCTION

BACKGROUND

The Pavement Testing Facility (PTF) is a permanent, outdoor, full-scale pavement testing laboratory located at the Federal Highway Administration's (FHWA) Turner-Fairbank Highway Research Center in McLean, Virginia. The purpose of this facility is to quantify the performance of test pavements trafficked under accelerated loading. The facility consists of several instrumented test pavements and the Accelerated Loading Facility (ALF) testing machine. Formal operation of the facility began in October 1986.

PURPOSE AND SCOPE

The first phase of pavement research was conducted at the PTF from October 1986 through February 1989. During this phase, eight pavement test sections were trafficked using a range of loads and tire pressures. The objectives of the first phase of research were:

- Establish operating and data collection procedures for the PTF.
- Study pavement response and performance for a range of loads and tire pressures, with emphasis on the influence of tire pressure.
- Assess the rationality of pavement response and performance data obtained from accelerated testing methods.

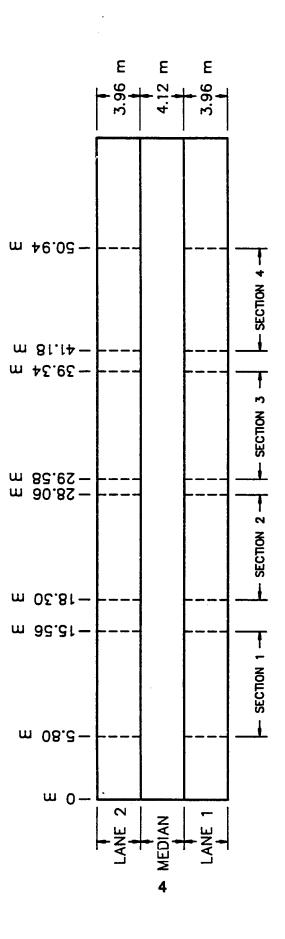
This report summarizes the work performed during the first phase of research. The report includes a discussion of the construction and instrumentation of the PTF test pavements. It describes the operation of the ALF testing machine, and the data collection procedures used at the PTF. The report also summarizes the environmental, and pavement response and performance data collected during the first phase of research. Finally, an analysis of the accelerated pavement testing data was conducted to assess the strengths and weaknesses of accelerated testing with the ALF machine.

CHAPTER 2. PAVEMENT TESTING FACILITY

TEST PAVEMENT CONSTRUCTION

For the first phase of research, the PFT included two, 3.96-m (13-ft) wide, 61-m (200-ft) long asphalt concrete test lanes, designated Lane 1 and Lane 2 as shown in figure 1. Each test lane was divided into four test sections, designated section 1 through section 4, for a total of eight test sections. The two lanes were separated by a 4.12-m (13.5-ft) wide median, which provided a location for maintaining and repairing the ALF testing machine. To facilitate surface drainage, the site had a longitudinal slope of 0.5 percent, and each lane had a cross slope of 1.5 percent.

Design cross sections for the two lanes are presented in figure 2. Each lane consisted of asphalt concrete wearing and binder courses, and a dense graded crushed aggregate base course over a uniformly prepared subgrade. The two lanes differed in total pavement thickness and thickness of the individual layers, and were designed to sustain substantially different traffic levels. Lane 1 was a relatively weak pavement structure with a design structural number of 2.90. Lane 2, with a design structural number of 4.76, was a much stronger structural section. The pavements were constructed by a local highway contractor in the summer of 1986. The materials and construction procedures employed were accordance with the Virginia Department of Highways and Transportation specifications.⁽¹⁾


PAVEMENT THICKNESSES

A construction problem identified during the first phase of research was inadequate grade control during grading of the subgrade and crushed aggregate base.⁽²⁾ Table 1 presents average layer thicknesses measured by differential leveling during construction. These thicknesses were measured along the centerline of the proposed ALF wheelpath for each test section. Table 1 shows a relatively large variation in layer thicknesses presented in table 1 were used in all analyses of pavement response and performance for the phase 1 test sections.

MATERIAL PROPERTIES

Various laboratory and in-situ tests were performed to characterize the pavement materials. Tests were conducted at the time of construction and after failure of each test section. Additionally, samples of the materials were tested by other researchers in conjunction with various projects. The following sections summarize the results of these tests.

Figure 1. Pavement Testing Facility site plan.

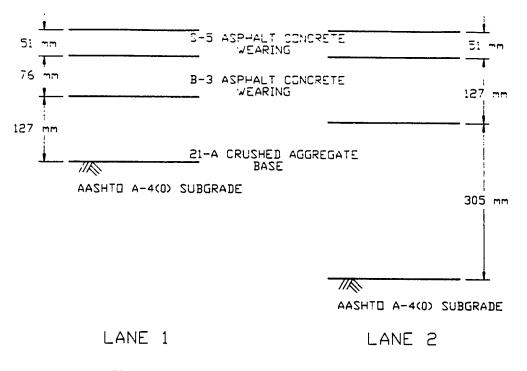


Figure 2. Design pavement cross sections.

		Thickness, mm (in)	
Lane	Section	Aggregate Base	Asphalt Concrete
1	1	114 (4.5)	127 (5.0)
1	2	122 (4.8)	127 (5.0)
	3	140 (5.5)	122 (4.8)
·	4	165 (6.5)	107 (4.2)
2	1	287 (11.3)	178 (7.0)
	2	285 (11.2)	173 (6.8)
3		300 (11.8)	185 (7.3)
	4	235 (12.8)	178 (7.0)

Table 1. Average layer thicknesses.

Subgrade

The subgrade soil was a nonplastic, silty, fine sand, with an American Association of State Highway and Transportation Officials (AASHTO) classification A-4 (0). Table 2 presents the results of gradation, specific gravity, Atterberg limits, moisture-density, and soaked CBR tests performed on samples of the subgrade soil. In addition to these tests, a limited number of resilient modulus tests, and rapid triaxial shear strength tests were performed by other researchers.^(2.3) Table 3 summarizes the resilient modulus models which define the non-linear characteristics of the subgrade soil. These models show the soil exhibited a stress hardening behavior characteristic of granular materials. The exponent in these models indicates the degree of stress sensitivity of the soil. Note, the exponents from the two references are the same inspite of the differences in density, moisture content, and gradation. The rapid shear testing was conducted at a rate of 38 mm/sec (1.5 in/sec) on samples at the reference 3 density, moisture content, and gradation. These tests indicated a cohesion of 48.3 kPa (7 psi) and an angle of internal friction of 16 degrees.

In-situ density and moisture content tests were conducted during construction and after each test section failed. A dry density of 1788 kg/m³ (111.6 lb/ft³) was considered representative of the subgrade soil. The average moisture content at the time of construction was 10.0 percent. Post failure tests indicated this moisture content increased to approximately 17.0 percent within the first year, and then remained relatively constant.

Crushed Aggregate Base

The base course material used in the construction of the PTF test sections was a dense graded, crushed diabase from Manassas, Virginia. Table 4 presents the results of gradation, specific gravity, and moisture-density tests performed on samples of the crushed aggregate base.

In addition to these tests, a limited number of resilient modulus tests were performed by other researchers.^(2,3) Table 5 summarizes the resilient modulus models which define the non-linear characteristics of the crushed aggregate base. Like the subgrade soil, the base course exhibited a stress hardening behavior characteristic of granular materials. The model from reference 2 has a much higher exponent, indicating a greater degree of stress sensitivity. Typically, as the quality of a material increases, the exponent decreases. In other words, higher quality materials exhibit more linear behavior. Considering the exponents in the subgrade and the base course models, one would expect the crushed aggregate exponent to be less than that for the silty sand. Therefore, the model from reference 3 is considered more representative of the crushed aggregate base course behavior.

Gradation		Percent	Passing
	Sieve Size	Average	Range
	25 mm (1 in)	100	94-100
	14 mm (3/4 in)	99	94-100
	9.5 mm (3/8 in)	97	89-100
	4.75 mm (#4)	96	88-100
	2 mm (#10)	95	87-99
	425 µm (#40)	85	90-70
	75 µm (#200)	47	4-4-48
Apparant Specific Gravity		2.840	
Plasticity Index		Non-plastic	
AASHTO T-99 Moisture Density Max. Dry Density Opt. Moisture	1792 kg/m ³ (111.9 lb/ft ³) 14.9 %		
AASHTO T-180 Moisture Density Max. Dry Density Opt. Moisture			
California Bearing Ratio		6.7	

Table 2. Summary of subgrade characterization tests.

Reference 2 Subgrade Resilient Modulus Models ¹					
$M_r = 4295 (\theta)^{\circ}$		$\sigma_{\rm d}$ = 34.5 and 55.2 kPa (5 and 8 lb/in ²)			
$M_r = 8590 (\theta)^{0}$					
Density	1730 kg/m ³ (10				
Moisture Content	10.0 %)			
Gradation	Sieve Size	Percent Passing			
	25 mm (1 in)	100			
	19 mm (3/4 in)	98			
	9.5 mm (3/8 in)	97			
	4.75 r∩m (#4)	94			
	2 mm (#10)	92			
	425 µm (#40)	79			
	75 µm (#200)	45			
Reference 3 Subgrade Resilient	Modulus Model ¹				
$M_r = 3688 (\theta)^{\circ}$	52				
Density	1722 kg/m³ (10	7.5 lb/ft³)			
Moisture Content	17.5 %)			
Gradation	Sieve Size	Percent Passing			
	25 mm (1 in)	100			
	19 mm (3/4 in)	97			
	9.5 mm (3/8 in)	92			
	4.75 mm (#4)	87			
	2 mm (#10)	83			
	425 µm (#40)	71			
	75 µm(#200)	34			

Table 3. Summary of subgrade soil resilient modulus models.

¹ Models yield M, in kPa for stresses in kPa (1kPa = 0.145038 lb/in²)

Gradation		Percent	Passing
	Sieve Size	Average	Range
	37.5 mm (1-1/2 in)	100	
	25 mm (1 in)	96	94-98
	19 mm (3/4 in)	88	83-93
	12.5 mm (1/2 in)	78	72-85
	9.5 mm (3/8 in)	72	66-80
	4.75 mm (#4)	61	56-70
	2.36 mm (#8)	49	44-62
	1.18 mm (#16)	38	34-44
	600 µm (#30)	29	26-34
	300 µm (#50)	22	19-26
	150 µm (#100)	16	14-20
	75 µm (#200)	12	10-15
Apparant Specific Gravity Coarse Fraction Fine Fraction		2.930 2.934	
Absorption Coarse Fraction Fine Fraction	0.98 % 1.85 %		
AASHTO T-99 Moisture Density Max. Dry Density Opt. Moisture	2371 kg/m³ (148.0 lb/ft³) 7.8 %		
AASHTO T-180 Moisture Density Max. Dry Density Opt. Moisture	2436 kg/m ³ (152.1 lb/ft ³) 5.8 %		

Table 4. Summary of crushed aggregate base characterization tests.

.

.

Reference 2	Reference 2 Crushed Aggregate Base Models ¹						
	$M_r = 8534 (\theta)^{0.80}$ $\sigma_d = 82.7$ and 124.1 kPa (12 and 18 lb/in ²						
	$M_r = 19568 (\theta)^{0.80}$	$\sigma_{\rm d}$ = 41.4 kPa (6 lb/in ²)					
	Density	2451 kg/m³ (153	.0 lb/ft ³)				
	Moisture Content	3.2 %					
	Gradation	Sieve Size	Percent Passing				
		37.5 mm (1-1/2 in)	100				
		25 mm (1 in)	95				
		19 mm (3/4 in)	85				
		9.5 mm (3/8 in)	70				
		4.75 mm (#4)	60				
		2.36 mm (#8)	47				
		300 µm (#50)	21				
		75 µm (#200)	12				
Reference 3	Crushed Aggregate	Base Model ¹					
	$M_r = 39050 (\theta)^{0.23}$						
	Density	2283 kg/m³ (142	.5 lb/ft ³)				
	Moisture Content	5.5 %					
	Gradation	Sieve Size	Percent Passing				
		37.5 mm (1-1/2 in)	100				
		25 mm (1 in)	97				
		19 mm (3/4 in)	90				
9.5 mm (3/8 in) 4.75 mm (#4)		9.5 mm (3/8 in)	71				
		4.75 mm (#4)	60				
		2.00 mm (#10)	40				
		425 µm (#40)	22				
		75 µm (#200)	12				

Table 5. Summary of crushed aggregate base resilient modulus models.

•

¹ Models yield M_r in kPa for stresses in kPa (1kPa = 0.145038 lb/in²)

In-situ density and moisture content tests were conducted during construction and after each test section failed. A dry density of 2303 kg/m³ (143.8 lb/ft³) was considered representative of the crushed aggregate base layer. The average moisture content was 3.2 percent at the time of construction. Post failure tests indicated this moisture content increased to approximately 5.4 percent within the first year, and then remained relatively constant.

Asphalt Concrete

The PFT test sections included asphalt concrete wearing and binder courses. Both mixes were produced with the same aggregate and AC-20 asphalt cement. Table 6 presents the components and job mix formulas for the two mixtures. The wearing mix was a typical dense graded mix with a maximum aggregate size of 12.5 mm (1/2 in). The binder mix, which was also dense graded, had a maximum aggregate size of 37.5 mm (1-1/2 in). Various properties of the virgin asphalt cement and asphalt cement recovered from loose mix samples of the paving mixtures are presented in table 7. Samples of both mixtures taken from the paver during construction were subjected to a Marshall mixture analysis. Additionally, extraction tests were performed on loose mix samples obtained during construction and pavement cores obtained after each test section failed. The results of these tests are summarized in table 8. Finally, table 9 summarizes the results of air void content and indirect tension modulus tests conducted on cores removed from untrafficked areas after each test section failed.

Nondestructive Testing

During construction of the PTF test sections, nondestructive testing (NDT) was performed with a falling weight deflectometer (FWD) on the surface of each pavement layer. The purpose of this testing was to establish in-situ properties for each of the pavement layers prior to trafficking the pavement. Additionally, the results of these tests were used to identify differences between the pavement test sections. Table 10 summarizes the results of the NDT in terms of composite moduli. Appendix A presents the NDT data collected during construction. The composite moduli in table 10 were calculated from the Boussinesq deflection equation using the deflections and radial offsets measured during the NDT.

$$E = [\frac{pa(1 - v^2)}{d(t)}]F$$
(1)

where

- E = composite modulus
- p = contact pressure
- a = plate radius
- v = Poisson's ratio (0.35 assumed)

Job Mix Formulas						
Gradation						
	Sie Siz		Binder	Wearing		
	37.5 mm	(1-1/2 in)	100			
	19 mm	(3/4 in)	75-83			
	12.5 mm	(1/2 in)		100		
	4.75 m	m (#4)	39-47	60-68		
	2.36 mr	m (#8)	28-36			
	600 µm	(#30)		23-29		
	75 µm	(#200)	3-5	4-6		
Asphalt, %			4.2-4.8	5.3-5.9		
Mixture Composition	<u>on</u>					
		Prop	ortion			
Material	Туре	Binder	Wearing	Specific ¹ Gravity	Absorption %	
37.5 mm Coarse	Diabase	25²		2.947	0.62	
19 mm Coarse	Diabase	30 ²		2.935	0.88	
12.5 mm Coarse	Diabase		40 ²	2.963	1.01	
2 mm Screenings	Diabase 35 ²		40 ²	2.950	2.18	
Natural Sand	Quartz	10 ²	10²	2.669	1.37	
Asphalt Cement	AC-20	4.5 ³	5.6 ³			
Antistrip	Pave Bond	0.5⁴	0.5 ⁴			

Table 6. Asphalt concrete job mix formulas and mixture composition.

Apparant specific gravity
 Percent by weight of aggregate
 Percent by weight of total mix
 Percent by weight of asphalt cement

Test and Conditions	Result	
Specific Gravity, 25 °C	1.024	
Flash Point, °C	312.8	
Penetration, 25 °C, 100 g, 5 s	78	
Viscosity, 135 °C, centistoke	413	
Viscosity, 60 °C, poise	2160	
Solubility, trichlorethylene, %	99.46	
Thin Film Oven, 162.8 °F, 5 hours Loss, % Penetration, 25 °C, 100 g, 5 s Viscosity, 135 °C, centistoke Viscosity, 60 °C, poise	0.21 48 600 5145	
Recovered Asphalt ¹	Binder	Wearing
Penetration, 25 °C, 100 g, 5 s Viscosity, 135 °C, centistoke Viscosity, 60 °C, poise	47 699 7397	50 675 5563

Table 7. Asphalt cement properties.

 $^{\circ}C = 5/9(^{\circ}F - 32)$

¹ Paving mixtures contained 0.5 % by weight of asphalt cement Pave Bond antistripping additive.

Marsha	all Mixture Analysis ¹					
Proper	ty	Bin	der	Wearing		
Asphal	t Content, %	4.5		5.6		
Bulk S	pecific Gravity	2.5	80	2.55	7	
Theore	tical Specific Gravity	2.6	50	2.60	6	
Effectiv	e Specific Gravity	2.8	65	2.86	7	
Air Voi	d Content, %	2.	6	1.9)	
Stabilit	y, kN (lb)	21.71	(4880)	14.81 (3330)	
Flow, r	mm (0.01 in)	-	-	3.6 (14)	
Extrac	tion/Gradation Resul	its			ہے۔ جو پر برجہ سری ہر وہ سے	
Grada	tion		Percent	Passing		
		Bin	der	Wearing		
	Sieve Size	Average	Range	Average	Range	
	37.5 mm (1-1/2 in)	100				
	25 mm (1 in)	97	91-100			
	19 mm (3/4 in)	83	72-89			
	12.5 mm (1/2 in)	58	47-67	100		
	9.5 mm (3/8 in)	50	40-59	95	92-98	
	4.75 mm (#4)	43	35-52	64	58-70	
	2.36 mm (#8)	36	30-42	46	41-49	
	1.18 mm (#16)	28	24-33	35	32-37	
	600 µm (#30)	21	18-24	25	24-27	
	300 µm (#50)	13	11-15	16	14-17	
	150 µm (#100)	.9	7-10	11	9-12	
	75 µm (#200)	6	5-8	8	8-10	
Asnh	alt Content, %	4.7	3.5-5.3	5.6	5.1-5.9	

Table 8. Summary of Marshall mix and extraction analyses.

¹ Field samples compacted 75 blows per side at 121.1 °C (250 °F)

d(r) = deflection at radial offset r

 \dot{F} = Boussinesq deflection factor.

r/a	F
0	0.5
1.0 - 1.2	1.273(r/a) ^{-1.683} 1.12(r/a) ^{-1.12} 1.01(r/a) ^{-1.01}
1.2 - 3.0	$1.12(r/a)^{-1.12}$
> 3.0	1.01(r/a) ^{-1.01}

For an infinite thickness of a linear material, equation 1 would result in the same calculated modulus at each radial offset. The subgrade composite moduli in table 10, however, first decrease then increase with increasing radial offset. This type of behavior is characteristic of stress softening materials whose stiffness decreases as the shear stress increases. At first, this result may appear to conflict with the laboratory tests which showed the subgrade to be a stress hardening material. A closer look at the Reference 2 models in table 3, which were developed from tests at various deviatoric stresses, shows the modulus to decrease with increasing deviatoric stress and to increase with increasing confinement. This type of behavior is not uncommon for granular materials, and a model of the form of equation 2 has been proposed to account for both of these effects.⁽⁴⁾

(2)

where

 M_r = resilient modulus

 θ = bulk stress

 r_{oct} = octahedral shear stress

k1, k2, k3 = nonlinear material coefficients from regression analysis.

					Res	lient Mo	dulus, N	IPa	
		Air Vo	ids, %	5 °C		25 °C		40 °C	
Mix	No.	Avg	σ	Avg	σ	Avg	σ	Avg	σ
Binder	54	3.41	1.37	15334	1944	2761	665	505	205
Wearing	43	4.74	1.10	12790	1124	2337	514	459	108

Table 9. Summary of air voids and resilient modulus tests.

1 MPa = 145.038 lb/in² °C = 5/9(°F-32)

				Cor	nposite N	<i>l</i> odulus,	MPa	
	I		Radial Offset, mm					
Lane	Sec	Location	0	211	412	511	810	1270
1	1	Subgrade Base Surface	55.5 66.0 103.8	34.9 46.1 57.4	47.7 60.7 48.4	58.1 86.9 62.3	86.9 107.2 104.3	 118.1 122.0
1	2	Subgrade Base Surface	46.3 55.3 113.2	32.5 51.0 62.7	41.7 64.8 53.0	63.6 85.8 66.6	78.7 100.0 105.8	 131.1 136.0
1	3	Subgrade Base Surface	41.0 59.3 114.5	36.9 51.6 64.2	50.3 61.6 55.0	64.3 91.4 70.5	80.1 114.0 114.0	 132.1 143.4
1	4	Subgrade Base Surface	38.5 78.0 121.1	40.5 57.4 72.2	49.0 69.3 61.9	62.7 95.6 78.5	81.6 122.2 117.6	 140.2 150.9
2	1	Subgrade Base Surface	46.3 115.7 306.8	44.5 89.6 166.0	53.4 87.4 126.2	55.1 97.6 125.5	62.2 102.9 138.4	 103.4 135.6
2	2	Subgrade Base Surface	48.3 82.2 285.8	39.6 71.0 152.4	46.9 71.6 116.6	61.5 88.2 116.5	80.7 116.2 144.6	 135.7 182.0
2	3	Subgrade Base Surface	58.2 106.5 340.2	58.5 90.9 184.8	78.9 87.0 139.8	107.4 107.2 137.6	133.2 138.2 163.6	 158.6 196.2
2	4	Subgrade Base Surface	54.7 121.1 365.5	42.2 88.5 205.3	52.9 81.4 158.0	74.3 96.9 157.3	102.5 127.4 181.9	 150.5 206.1

Table 10. Summary of composite moduli from construction NDT data.

1 MPa = 145.038 lb/in^2 **1** mm = 0.03937 in

The coefficient k2 must be zero or positive since a negative k2 would imply a decreasing modulus with increasing confinement which is not rational for paving materials. A k2 of zero reduces the model to the widely used relationship for cohesive materials. Thus, the model can be used to describe the behavior of a wicle range of materials.

For the PTF subgrade, the NDT suggests the modulus behavior was influenced more by the deviatoric stress effect for typical in-situ stress conditions. The PTF subgrade should, therefore, be viewed as a stress softening material. This type of subgrade behavior has a major impact on layer moduli backcalculated using typical linear elastic basin analysis methods. The subgrade modulus which optimizes the linear elastic solution, typically provides a good match between measured and predicted deflections at large radial offsets. Thus, the backcalculated subgrade modulus would be representative of the subgrade in a state of low shear stress. Considering equation 2 and the distribution of stresses, the backcalculated subgrade modulus would be stiffer than that occuring near the loaded area where the shear stresses are significantly higher. To match the deflection under the load plate, the overestimation of the subgrade modulus under the loaded area would be compensated by an underestimation of the modulus of the other pavement layers. A typical result of this compensating effect would be backcalculated base course moduli which are unrealistically low. The introduction of a rigid layer at depths of 3 to 6 m (10 to 20 ft) or dividing the subgrade into several layers can sometimes result in more realistic backcalculated moduli.

Attempts to backcalculate layer moduli for the NDT data collected on the base course and the completed pavement resulted in unrealistically low base course moduli due to the nonlinear subgrade effect described above. The composite moduli in table 10, however, provide a means of comparing the initial structural capacities of the various test sections. The average composite modulus difference, defined as the difference between the completed pavement composite modulus and the subgrade composite modulus directly under the load plate, is summarized in table 11. A greater composite modulus difference implies a higher initial structural capacity. Also presented in table 11 are equivalent thicknesses of granular material which were obtained by transforming the asphalt layer into an equivalent thickness of granular material which were material using equation 3.

$$t_{eq} = t_{cab} + t_{ac} \sqrt{\frac{E_{ac}}{E_{cab}}}$$

(3)

where

 t_{sq} = equivalent granular thickness t_{cab} = crushed aggregate base thickness t_{ac} = asphalt concrete thickness E_{cab} = crushed aggregate base modulus (assumed 207 MPa (30 ksi))
E_{ac} = asphalt concrete modulus (assumed 1103 MPa (160 ksi) psi at 32.2 °C (90 °F))

Comparing the composite moduli and thicknesses in table 11 shows, the composite modulus difference correlates well with the equivalent granular thickness. Thus, the NDT confirms the between test section variability described previously. This variability should be considered when evaluating the pavement performance data by using the average thicknesses of table 1.

AASHTO NDT Method 2 provided a means for estimating the effective in-situ subgrade moduli for the phase 1 test sections. In NDT Method 2, the pavement deflection at the middle of the load plate was related to the subgrade modulus and the structural number of the pavement through equation 4.

Lane	Section	Equivalent Granular Thickness, mm	Composite Modulus Difference, MPa	Surface Temperature ℃
1	1	335	48.2	34.4
1	2	343	66.8	33.9
1	3	341	73.5	33.9
1	4	350	82.6	33.3
2	1	597	260.5	31.1
2	2	586	237.5	31.1
2	3	625	282.0	31.7
2	4	635	310.8	30.6

Table 11. Average composite moduli.

 $1 \text{ MPa} = 145.038 \text{ lb/in}^2$

1 mm = 0.03937 in

$$^{\circ}C = 5/9(^{\circ}F-32)$$

$$d_0 = \frac{2P(0.0043h)^3}{\pi a_c SN^3} [1 + F_b(\frac{SN^3(1 - v_s^2)}{E_s(0.0043h)^3} - 1)]$$

h_

(4)

where

$$F_{b} = \left[\sqrt{1 + \left(\frac{h_{\theta}}{a_{c}}\right)^{2} - \frac{h_{\theta}}{a_{c}}}\right]\left[1 + \frac{a_{c}}{2(1 - v_{s})\sqrt{1 + \left(\frac{h_{\theta}}{a_{c}}\right)^{2}}}\right]$$

$$h_{s} = (209.3) SN[\frac{(1-v_{s})^{3}}{E_{s}}]^{\frac{1}{3}}$$

$$a_{i}=0.0043\left[\frac{(E_{i})}{(1-v_{i}^{2})}\right]^{\frac{1}{3}}$$

- E₂ = subgrade modulus
- $E_i = modulus$ for layer i
- v_{\star} = subgrade Poisson's ratio
- v_i = Poisson's ratio for layer i
- $a_r = plate radius$
- P = applied load
- SN = structural number
 - $h_t = total pavement thickness$
 - a; = structural coefficient

Equation 4 was derived using the method of equivalent thicknesses and the Palmer/Barber closed form solution for the deflection of a two layer system. Appendix PP of Volume 2 of the 1986 AASHTO Guide for Design of Pavement Structures presents details of the derivation.⁽⁵⁾

From the as-constructed thicknesses in table 1 and the NDT data collected during construction (appendix A), estimated subgrade moduli were computed from equation 4. The structural coefficents used in the analysis were 0.14 and 0.24 for the crushed aggregate base and asphalt concrete, respectively. Assuming Poisson's ratio to be 0.35, these coefficients correspond to crushed aggregate base and asphalt concrete moduli of 207 MPa (30 ksi) and 1103 MPa (160 ksi) which were considered reasonable for the conditions during the construction NDT. Table 12 summarizes the subgrade moduli obtained from this analysis for NDT conducted on the base and completed pavement. These moduli are combined with those from the subgrade NDT in figure 3. Clearly, the estimated subgrade modulus increases with increasing structural capacity which is expected for a stress softening subgrade material.

Lane	Sec	Location	Structural Capacity	Subgrade Modulus, MPa (ksi)
1	1	Base Surface	0.63 1.83	44.8 (6.50) 41.4 (6.00)
1	2	Base Surface	0.67 1.87	55.2 (8.00) 48.3 (7.00)
1	3	Base Surface	0.77 1.92	41.4 (6.00) 48.3 (7.00)
1	4	Base Surface	0.91 1.92	55.2 (8.00) 48.3 (7.00)
2	1	Base Surface	1.58 3.26	82.7 (12.00) 189.6 (27.50)
2	2	Base Surface	1.57 3.20	62.0 (9.50) 168.9 (24.50)
2	3	Base Surface	1.65 3.40	68.9 (10.00) 196.5 (28.50)
2	4	Base Surface	1.79 3.47	86.2 (12.50) 213.7 (31.00)

Table 12. Estimated in-situ subgrade moduli.

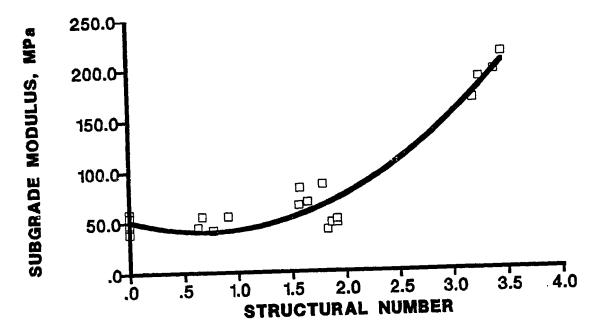


Figure 3. Variation of subgrade modulus with structural capacity.

The relationship shown in figure 3 provides a reasonable estimate of the variation of the modulus of the PTF subgrade soil with strucutral capacity. It should be noted that in AASHTO NDT Method 2, the structural capacity is related to the pavement rigidity through equation 5. Thus, the abscissa in figure 3 can be replaced with pavement rigidity.

$$Eh^{3} = \left(\frac{SN}{0.0043}\right)^{3} (1 - v^{2})$$
(5)

INSTRUMENTATION

Instrumentation forms an integral component of the PTF. During the first phase of research, various instruments were installed to monitor environmental conditions and to measure pavement responses. A computer data acquisition system was assembled and customized software was developed for acquiring, reducing, and storing data.⁽²⁾ The sections below summarize the instrumentation installed at the PTF during the Phase 1 research program.

Environmental

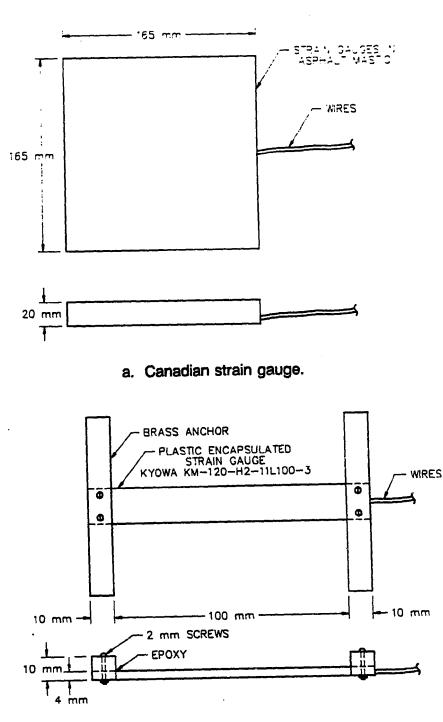
Environmental conditions have a major influence on the structural response and performance of pavement sections. Since the PTF does not provide environmental control, environmental conditions were monitored during pavement testing to aid in the interpretation of the test results. The environmental instrumentation installed during the Phase 1 research program included:

- Portable weather station.
- Subgrade moisture cells.
- Thermocouples.

The portable weather station was used to monitor ambient air temperatures and precipitation. The daily maximum and minimum air temperatures and daily precipitation were stored in the environmental database. Additional climatic data may be obtained from the National Oceanic and Atmospheric Administration (NOAA) weather stations at Dulles International and Washington National Airports, which are both located within approximately 40 km (25 mi) of the PTF.

Moisture conditions have a significant effect on the strength and stiffness of subgrade soils. Therefore, to monitor variations in moisture content during the phase 1 research, several resistance type moisture cells (Soiltest Model MC-373) were installed at various depths in the subgrade. These cells operate on the principle that the resistance of the cell changes with variations in the moisture content of the soil in

which they are installed. The resistance of the cell is also a function of soil type, density, and temperature; therefore, careful calibration and installation are necessary for accurate measurement of soil moisture content. Considering the uncertainties associated with calibration and installation, the accuracy of the absolute moisture content measured with these cells was questionable. However, they were considered acceptable for monitoring gross changes in moisture content. The data from the moisture cells were supplemented with oven-dried moisture contents obtained after each test section failed.


Load induced responses of asphalt concrete pavements are greatly affected by the temperature of the asphalt layers. Thermocouples (Type T) were, therefore, installed at various depths in the asphalt layers to monitor pavement temperatures. To obtain a detailed temperature history for each performance test, the data acquisition system recorded the thermocouple temperatures hourly as the ALF testing machine trafficked the pavement. Additionally, the thermocouples were monitored during any load response testing conducted during the phase 1 research program.

Pavement Response

Over the past 30 years, advancements in pavement research have resulted the development of mechanistic pavement design and analysis procedures. These procedures use performance prediction models which relate pavement damage to load induced stresses or strains in the pavement structure. Various pavement response instrumentation was used at the PTF to collect data to verify and improve mechanistic performance prediction models. The following pavement response instrumentation was included in the first phase of research:

- Strain gauges.
- Surface deflectometer.
- Surface profiler.

Most prediction models for fatigue damage in asphalt concrete pavements relate fatigue damage to the tensile strain at the bottom of the asphalt layer. To measure this strain, several strain gauges were installed at the interface between the crushed aggregate base and the lower lift of asphalt concrete. Two types of gauges were used. The first, developed in Canada, consisted of wire resistance strain gauges embedded in an asphalt mastic to form a 165-mm (6.5-in) square transducer which was approximately 20 mm (0.80 in) thick as shown in figure 4.⁽⁶⁾ Six of these gauges were installed in the phase 1 test sections. The second, commonly referred to as an "H" gauge was initially developed in Europe.⁽⁶⁾ The version installed at the PTF consisted of a wire resistance strain gauge encapsulated in a plastic strip to which two brass anchors were attached. As shown in figure 4, the completed transducer had the shape of the letter "H" with a 51-mm (2-in) active gauge length. A total of 24 of these gauges were installed in the phase 1 test sections.

b. "H" type strain gauge

Figure 4. Strain gauges installed in phase 1 test sections.

All of the strain gauges were operational immediately after construction; however, the durability of both types of gauges was poor. Several gauges failed due to environmental effects prior to traffic loading. These failures were typified by a gradual increase in gauge resistance. Other gauges failed during traffic loading. These failures resulted in an abrupt loss of continuity due to broken gauges or lead wires. Blocks of asphalt concrete containing selected gauges were recovered during postfailure investigations and examined. These examinations revealed a problem with the "H" gauges. During warm weather tests, the "H" gauges tended to loosen as a result of traffic loading. Apparently, the gauges were stiffer than the asphalt concrete when the pavement was hot causing the gauges to loosen under repeated loading. For "H" gauges which remained tightly bonded, comparisons of measured and theoretical strains showed reasonable agreement; however, the loose "H" gauges, and the asphalt mastic gauges consistently yielded strains which were significantly less than the theoretical strains.⁽⁷⁾ For detailed information concerning strain gauges, refer to references 6 and 8.

Only sections 2 and 3 of each lane were instrumented with strain gauges during construction. Lane 2, section 1 was retrofitted with strain gauges using a technique developed in Finland.⁽⁶⁾ Foil resistance strain gauges were mounted to the bottom of a core removed from the pavement. The core was subsequently bonded into the pavement with epoxy. Figure 5 is a schematic of the retrofit core installation. To minimize the thickness of the epoxy, the strain gauges were attached to a 102-mm (4.0-in) diameter core obtained from an untrafficked area of the pavement using a nominal 108-mm (4.25-in) diameter diamond core barrel. A 102-mm (4.0-in) hole was then cut in the pavement at the instrumentation location using a nominal 102-mm (4.0-in) diamond core barrel. After trafficking the test section to failure with over 1.2 million load repetitions, 203-mm (8-in) cores containing the instrumented cores were removed and inspected. Cross sections cut through the cores using a concrete saw revealed the installation method provided a uniform, thin annulus of epoxy approximately 1-mm (1/32-in) thick. No cracks were observed in the pavement surface near the cores. The strain gauges remained operational for over 1 million load repetitions.

Wire resistance strain gauges were also installed at the pavement surface for a special tire pressure experiment conducted as part of the phase 1 research program.⁽⁹⁾ These gauges were bonded in 3 mm (1/8 in) deep slots cut in the pavement surface. The gauges were removed upon completion of the experiment. See reference 9 for additional information concerning the surface strain gauge installation.

For many years, surface deflections have been used in the structural evaluation of flexible pavements. The magnitude of the maximum surface deflection is an indicator of the structural capacity of the pavement. To measure defections directly under the ALF wheels required the installation of deflection gauges in the pavement structure.

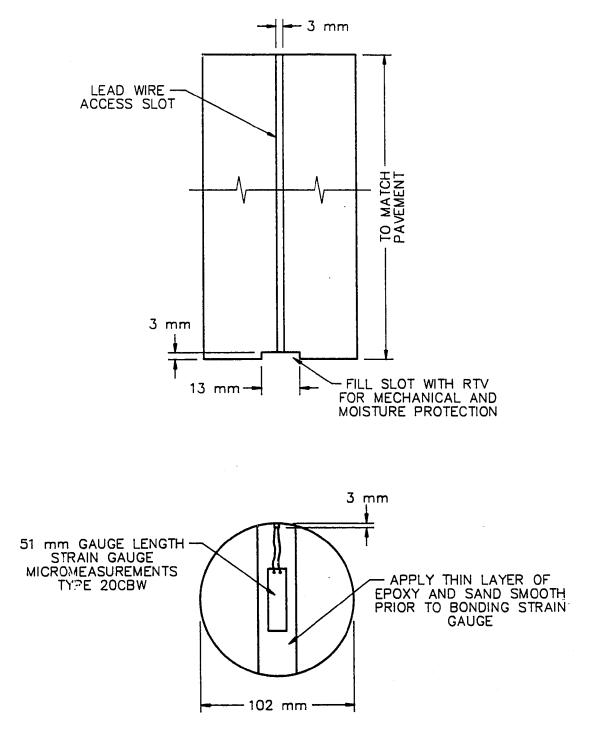


Figure 5. Schematic of retrofitted strain gauges.

Several types of in-situ deflection gauges have been developed and used in past research efforts; however, the installation of these devices required a 38 to 102-mm (1.5 to 4-in) diameter hole through the pavement. Since holes of this size would probably induce pavement failure during accelerated loading, in-situ deflection gauges were not installed during the phase 1 research program. Instead, surface deflections were monitored with a linear variable differential transformer (LVDT) mounted at the end of a 2.74-m (9-ft) long cantilever reference beam. With this arrangement, deflections could only be measured at distances greater than 0.66 m (26 in) from the center of the dual wheels. At these distances from the load, the measured surface deflections obtained with the cantilever beam device monitored the condition of the subgrade. The condition of the other layers were obtained through periodic testing with a falling weight deflectometer.

In recent years rutting in asphalt concrete pavements has become a subject of great concern. To permit frequent and accurate measurements of rutting during performance testing, the semiautomatic surface profiler shown in figure 6 was designed and constructed. This device uses a linear potentiometer to measure the elevation of the pavement surface relative to a plane defined by two reference beams mounted along the edge of the pavement. The potentiometer is mounted to a carriage which can be moved in both the transverse and longitudinal directions. Two shaft encoders monitor the position of the carriage. Pavement rutting and roughness were obtained from profiles in the transverse and longitudinal directions, respectively.

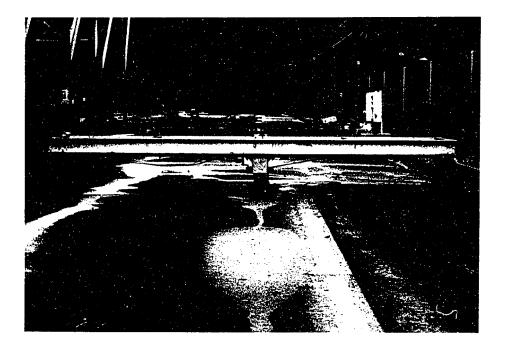


Figure 6. Photograph of surface profiler.

SUMMARY

This chapter presents background information concerning the configuration of the PTF during the first phase of research. It contains design and as built pavement thicknesses, as well as a summary of the results of laboratory and in-situ material property tests. This chapter also describes the environmental and pavement response instrumentation used during the first phase of research. Important factors to consider when analyzing pavement response and performance data from the phase 1 test sections are the nonlinear, stress softening subgrade behavior, and the between section variation in pavement thicknesses. The thicknesses presented in table 1 are recommended for future analyses.

CHAPTER 3. DATA COLLECTION

5.3

ACCELERATED LOADING FACILITY

Traffic loading was applied to the PTF test pavements with the ALF shown in figure 7. The ALF was delivered to the PTF in September 1986, and the first several weeks of operation were devoted to shakedown testing of the ALF, the PTF computer data acquisition system, and the general PTF operating procedures. The shakedown testing was performed on lane 1, section 3 with the ALF operated 8 hours per day, 5 days per week. At the end of the shakedown period, the ALF was moved to lane 2, section 3 to begin the pavement research testing. The operational goal for the first research test was to expand the ALF loading to 24 hours per day 7 days per week. Both nighttime and weekend operation took advantage of the ALF computer control system with no staff on site. To monitor the progress toward this goal, a detailed time log was maintained. Three categories were established for monitoring the productivity of the ALF: operating, failure, and standby time. Operating time accrued when the ALF was applying loads to the test pavement. Failure time occurred when the ALF machine was inoperable due to a failure of some component on the ALF or the computer control system. Standby time indicated the ALF was operable, but was not in operation for one or more reasons, including routine maintenance of the ALF, pavement condition monitoring, or unavailability of operators.

The average productivity statistics for the first pavement test were 37.5 percent operating, 8.5 percent failure, and 54.0 percent standby based a total of 168 hours per week. The majority of the standby time accrued on weekends when the ALF would shutdown due to an error detected by the computer control system, and no operators were available to restart the machine. Throughout the phase 1 research program, the standby time was continuously reduced to the point where 65 percent operating, 7 percent faliure, and 28 percent standby became the typical productivity statistics for the phase 1 tests. These numbers translate into approximately 40,000 load repetitions per week. The increased productivity was achieved primarily through an increased familarity with the ALF machine and the establishment of an inventory of frequently replaced parts.

For the phase 1 tests, the ALF simulated one-half of a dual-tire, single axle with loads ranging from 41.8 to 100.1 kN (9,400 to 22,500 lb). The wheel assembly traveled 18.5 km/h (11.5 mi/h) over a 9.8-m (32-ft) test section. To simulate highway traffic, the loads were applied in one direction and were laterally distrubuted. The lateral distribution used in the phase 1 tests was a normal distribution with a standard deviation of 133 mm (5.25 in). This distribution was truncated at 375 mm (14.75 in), the maximum permissible lateral movement of the ALF. Figure 8 shows the geometry of the dual tire assembly used to apply the test loads. The centerline of the trolley moved through the lateral position distribution, resulting in a wheelpath of 1.3 m (4 ft).

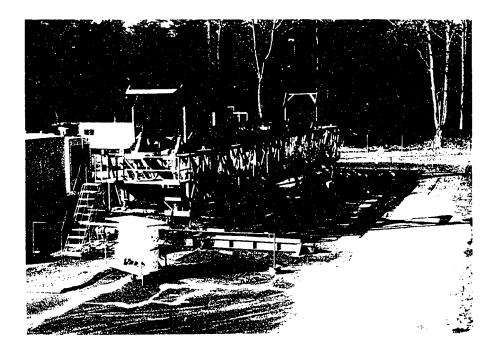


Figure 7. Photograph of the Accelerated Loading Facility.

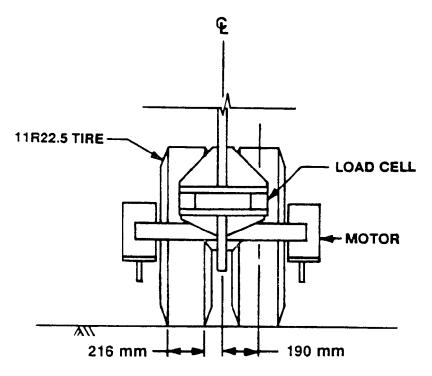


Figure 8. Geometry of the ALF dual wheel assembly.

Figure 9 depicts the manner in which the ALF trolley loads the pavement. The load on the test wheels was provided by ballast weights, each weighing approximately 10 kN (2,250 lb). The minimum weight of 41.8 kN (9,400 lb) was obtained by removing all of the weights and lifting the swinging arm in figure 9. In this configuration, the ALF had no suspension system. With the addition of the first ballast weight, an air bag and shock absorber system was added to the trolley assembly. At 84.5 kN (19,000 lb), the suspension system acted on approximately 50 percent of the load.

The loading characteristics of the ALF changed as the sprung load increased from approximately 0 to 40 kN (0 to 9,000 lb). Figure 10 shows the variation of the load with longitudinal distance for three of the ALF load levels. These loads were measured with load cells mounted in the trolley assembly. As can be seen in figure 10, the ALF applied a significant dynamic load component. The dynamic load component was largest at the lighter loads when most of the weight was not acted on by the suspension system. This dynamic loading effect was reflected in the pavement performance data and is discussed further in later sections.

During the phase 1 research effort, the ALF was used in two modes of operation: response testing and accelerated loading. The response testing mode used the ALF's variable loading and lateral position capabilities and the pavement instrumentation. The ALF was manually positioned at a specified location relative to the pavement instrumentation. Then several load cycles were applied while the instrumentation was monitored. During the first phase of research, response data were collected for a variety of loads, tire pressures, and transverse positions. These data formed a key component of the tire pressure study completed during the phase 1 research effort.⁽⁹⁾ A jib crane was designed, fabricated and installed on the ALF to facilitate the changing of the ballast weights during response testing. In the accelerated testing mode, the load and tire pressure were kept constant, and the ALF was operated 24 hours per day, 7 days per week. Pavement performance data were collected periodically during the accelerated load testing. Nighttime and weekend operation were performed by the ALF computer control system with no staff on site. During the phase 1 research effort, the facility was staffed with two operators, each working a normal 40-hour week. A spare parts inventory was established to maintain high productivity. With the spare parts inventory, worn or defective parts were replaced immediately to return the ALF to service. After the ALF was operating, the replaced part was overhauled and returned to the spare parts inventory. If the part could not be overhauled, a replacement was purchased. The spare parts inventory was periodically updated based on parts availability and maintenance history.

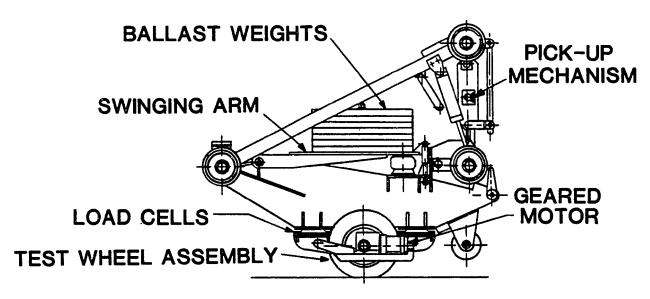


Figure 9. ALF trolley assembly.

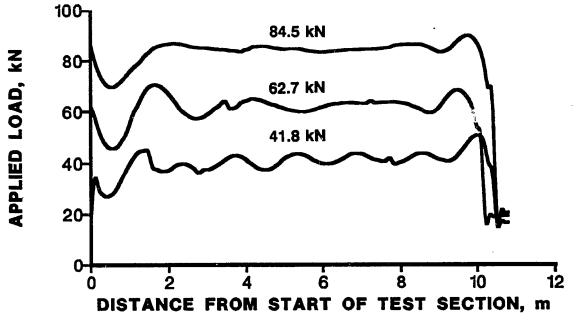


Figure 10. Typical ALF loading.

PAVEMENT PERFORMANCE MONITORING

The objective of the pavement performance monitoring at the PTF was to quantify the accumulation of structural and functional distresses in the pavement test sections. Additionally, these observations under carefully controlled loading conditions provide insight for a better understanding of the distress mechanisms in flexible pavements.

Two obvious measures of the structural distress in a pavement are the accumulation of cracking and rutting at the pavement surface. Cracking and rutting data were obtained periodically during the accelerated load tests conducted as part of the first phase of research. Upon completion of each test, postfailure investigations were conducted to document the condition of each pavement layer at failure. Changes in structural capacity resulting from the ALF load applications were also quantified through periodic nondestructive testing with a falling weight deflectometer. Additionally, an attempt was made to use in-situ strain measurements under the ALF load as a measure of the structural condition of the pavement. This last method met with limited success as much of the instrumentation failed early in the life of the pavement.

The AASHTO serviceability concept was used to quantify the functional distress in terms of present serviceability index (PSI). The PSI is a measure of the functional condition of a pavement at any time during its life, and is obtained from measures of roughness, cracking, and rutting.

Cracking

A manual procedure was used to measure cracking for the phase 1 test sections. Periodically, a clear sheet of plastic was placed over the test section and the cracks were traced onto the plastic. The test section was then divided into eight 1.22-m (4-ft) long by 1.83-m (6-ft) wide subsections as shown in figure 11. Two methods were used to quantify the amount of cracking. First, the total length of cracking in each subsection was carefully measured with a map wheel. Since the total surface area over which the cracking was measured remained constant, the increase in total crack length with traffic represented the increase in crack density within the test section. The second method was the standard AASHTO method which includes the surface area of AASHTO class 2 and class 3 cracking.⁽¹⁰⁾ Typical accumualtions of cracking by the two methods are shown in figure 12. From this figure it is apparent that the total crack length method is more sensitive to small amounts of cracking than the AASHTO prodecure. Measurements based on the AASHTO procedure were necessary for the computation of PSI.

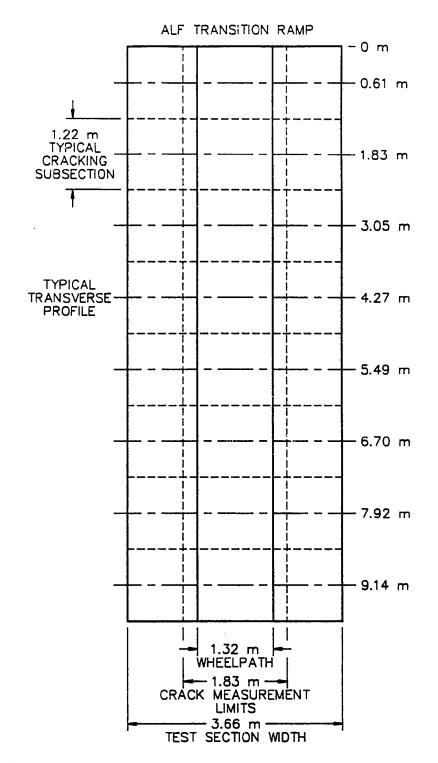


Figure 11. Location of phase 1 cracking and rutting data collection.

¥

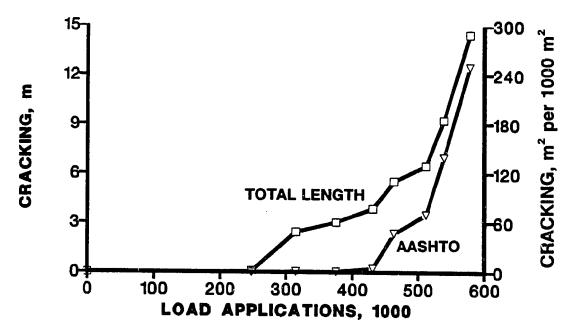


Figure 12. Comparison of the sensitivity of crack measuring methods.

Rutting

For the first two pavement tests, (lane 2, section 3 and lane 2, section 2), rutting was obtained by differential leveling conducted periodically during each test. As shown in figure 11, rut depths were obtained at the center of each of the 8 subsections used for measuring cracking. At each of these locations, the elevation of the pavement surface was measured every 153 mm (6 in) across the pavement to produce a transverse profile. To eliminate initial surface irregularities from the rut depth data, profiles obtained before trafficking were used as references. Subsequent profiles were subtracted from the appropriate reference to obtain a corrected profile. The rut depth was then calculated from the corrected profiles as shown in figure 13. The differential survey method proved to be very time consuming; therefore, to obtain rutting data more frequently, the semiautomatic profiling device described previously was developed. This device eliminated the need for survey measurements and directly measured the profile of the pavement surface relative to a fixed reference at 25 mm (1 in) spacings. The rut depth was then obtained from the profiles as outlined above for the differential survey procedure.

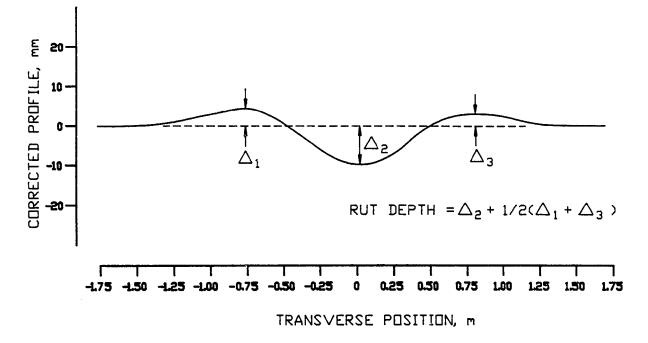


Figure 13. Calculation of rut depth from pavement profile.

Roughness

Longitudinal roughness is the primary variable in the calculation of the PSI for a pavement. In the development of the AASHTO PSI equation, roughness was quantified using slope variance which is the statistical variance of a series of pavement slope measurements. At the AASHO Road Test, the pavement slope, based on a separation distance of 229 mm (9 in), was recorded continuously using a profilometer. The slope at 305 mm (12 in) intervals was then used to compute the slope variance.⁽¹⁰⁾

For the first two pavement tests of the Phase 1 research program, slope variance was obtained from differential survey data collected at 305 mm (12 in) spacings along the centerline of the test sections. Like the rutting measurements, the computation of slope variance using manual survey data was very tedious, but more importantly, survey errors, which could be as large as 0.25 mm (0.01 in), had a significant influence on the computed slope variance. With the addition of the semiautomatic profiling device at the beginning of the third pavement test (Lane 1, Section 2), the measurement of slope variance was greatly simplified and the reliability of the slope measurements increased. Using this device, the longitudinal profile of the pavement surface relative to a fixed reference was obtained at 25 mm (1 in) spacings.

The pavement slope for a 229-mm (9-in) separation distance was then calculated at each point, and the slope variance was computed as the variance of all the computed slopes.

Present Serviceability Index

The AASHTO serviceability concept was used to quantify the functional condition of the phase 1 test pavements. The basis of the AASHTO serviceability concept is the present serviceability rating (PSR) which is a rating, on a scale of 0 to 5, assigned to the pavement by a panel of experts based on the functional condition of the pavement at the time the rating was performed.⁽¹¹⁾ A rating of 5 indicates a perfect pavement while a rating of 0 is an exceedingly poor pavement. At the AASHO Road Test, the PSR was correlated with measurements of slope variance, rutting, and cracking and patching. The regression analysis resulted in the following predictive equation for estimating the PSR.⁽¹⁰⁾ The estimated value of PSR was called the present serviceability index or PSI.

$$PSI = 5.03 - 1.91 \times \log_{10}(1+SV) - 1.38 \times RD^2 - 0.01 \times (C+P)^{0.5}$$
(6)

where

SV = slope variance in 10^{-8} . RD = average rut depth in inches. (1 in = 25.4 mm) C+P = surface area of AASHTO Class 2 and 3 cracking and patching in ft²/1000 ft². (1 ft = 0.3048 m)

Using the above equation, the functional condition of the pavement can be estimated through a correlation with objective measurements. The PSI for the PTF test sections was computed during the phase 1 research to provide a common basis for describing the condition of the test pavements. A PSI of 3.0 has a specific meaning to pavement engineers, while the roughness or crack density may not. Figure 14 presents a typical PSI history from one of the Phase 1 test sections.

Nondestructive Testing (NDT)

For many years, NDT has been used as an integral part of the structural evaluation of flexible pavements. In pavement evaluation, NDT refers to the measurement of the surface deflection response of a pavement due to the application of a known load. This response can be used as an indicator of the structural capacity of the pavement, or it can be used to determine the in-situ modulus of the various pavement layers.

NDT was performed periodically with a falling weight deflectometer during the phase 1 research program. Two types of tests were performed. First, sections of the pavement which would not be trafficked were designated as reference locations, and NDT was conducted at these locations to establish benchmark deflections and in-situ

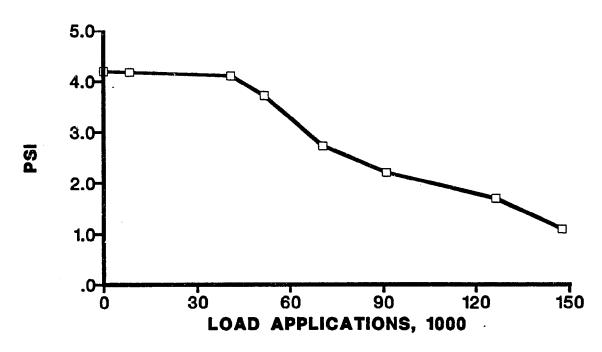


Figure 14. Typical PSI history from phase 1 test.

material properties. Testing at these reference locations also provided an indication of the effect of environment on the PTF test sections. The second type of NDT was designed to track the structural damage occurring in specific pavement test sections as a result of the ALF loading. For this testing, NDT was performed at designated locations, both in and out of the wheelpath, periodically as the test section was trafficked. Comparisons of deflections and structural capacity estimates were then used to quantify the structural damage occuring in the pavement.

Postfailure Investigations

Postfailure investigations were conducted after each of the phase 1 test sections was trafficked to failure. These investigations consisted of sawing the asphalt concrete, and excavating two trenches across the test section as shown in figure 15. The trenches were excavated in areas of the test section exhibiting average and above average distress. Transverse profiles were obtained at the top of the wearing course, the top of the crushed aggregate base course, and the top of the subgrade. These profiles were used to determine the amount of rutting attributable to each layer. The asphalt concrete was cored, both in and out of the wheelpath, and air void contents

and resilient moduli were measured in the laboratory. In-situ density and moisture content measurements were obtained in the base and subgrade, and samples of these materials were removed for grain size analyses. The postfailure investigations proved to be valuable in documenting the failure for each of the phase 1 tests.

ENVIRONMENTAL MONITORING

Since the PTF is an outdoor facility with no means of controlling the environment, environmental conditions were monitored during each pavement test. Temperature and moisture conditions have a significant impact on flexible pavement performance. The strength and stiffness of asphalt concrete is affected by temperature, while moisture affects the strength of subgrade soils and granular base materials. To quantify thermal conditions, pavement temperatures at seven depths in the asphalt layer were monitored with thermocouples hourly as each pavement test progressed. Additionally, pavement temperatures were recorded during most of the NDT performed during the phase 1 research program. To quantify moisture conditions, a record of precipitation was maintained at the site. Additionally, moisture cells installed in the subgrade during construction were monitored periodically. The results of the NDT at the reference locations were also used to quantify the effect of changing environmental conditions on the in-situ material properties. Finally, subgrade and base course moisture contents were obtained during the postfailure investigations.

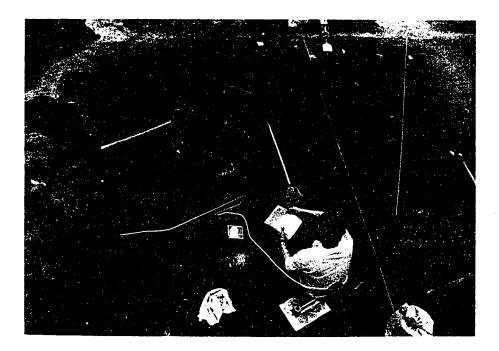


Figure 15. Photograph during postfailure investigation.

39

SUMMARY

This chapter provides a brief description of the ALF and its most important operational characteristics. It also describes the data collection procedures used during the first phase of research. Rutting, cracking, roughness, PSI, and NDT data were used to monitor the condition of the test pavements. After each test section failed, postfailure investigations were conducted to document the condition of the pavement layers at the time of failure. Finally, since the PTF had no environmental control, environmental conditions were monitored to aid in the interpretation of the pavement performance data.

CHAPTER 4. PAVEMENT TESTING RESULTS AND ANALYSIS

This chapter presents a summary of the environmental and pavement performance data for the phase 1 pavement tests. Seven of the eight phase 1 pavement test sections were included in the data base. Table 13 summarizes the load, tire pressure, testing period, and total number of load applications. Fatigue cracking was the predominant failure mode for the phase 1 tests. Excessive rutting in the test sections did not develop until after the asphalt concrete was severely cracked. Failure criteria were not established prior to testing the phase 1 sections; however, most of the pavements were tested well beyond the typical pavement engineer's definition of failure. The test on lane 2, section 1 was cut short due to time constraints, but significant rutting and the onset of fatigue cracking were still observed in this test. The results for lane 1, section 3 were omitted from the data base because this test section was used primarily for shakedown testing of the ALF testing machine. The sections below summarize the environmental and pavement performance data for each pavement test given in table 13.

Period	Section	Load, kN	Pressure, kPa	Passes
01/08/87 - 06/04/87	Lane 2, Section 3	84.5	689	502,622
06/18/87 - 11/30/87	Lane 2, Section 2	84.5	965	578,142
12/14/87 - 02/18/88	Lane 1, Section 2	51.6	689	147,696
03/01/88 - 03/08/88	Lane 1, Section 4	73.0	689	14,240
03/24/88 - 04/04/88	Lane 1, Section 1	62.7	689	37,033
04/29/88 - 12/03/88	Lane 2, Section 1	73.0	689	1,125,385
01/09/89 - 02/23/89	Lane 2, Section 4	100.1	689	233,622

Table 13. Su	ummary of p	ohase 1 p	avement tests.
--------------	-------------	-----------	----------------

1 kN = 224.809 lb

 $1 \text{ kPa} = 0.145038 \text{ lb/in}^2$

ENVIRONMENTAL

To aid in the interpretation of the pavement performance data, environmental conditions were monitored continuously during the first phase of research. Appendix B presents a daily listing of the environmental conditions at the site. Appendix B also presents NDT data collected at the untrafficked reference locations in lanes 1 and 2. Subgrade moisture conditions are of particular interest since pavement loads are ultimately carried by the subgrade, and the strength and stiffness of subgrade soils are greatly affected by moisture conditions. Figure 16 presents a plot of subgrade moisture contents as determined by moisture cell readings and oven dried samples. From this figure it is apparent that the moisture content of the subgrade increased from the as-constructed value of 10 percent to approximately 17 percent by January, 1987. It then remained relatively constant over the remainder of the testing period. Figure 17 shows a plot of subgrade moduli estimated from NDT conducted at untrafficked reference locations in lanes 1 and 2. The moduli were calculated from the outer sensor deflection and the Boussinesq deflection equation as outlined in chapter 2. Figure 17 shows a definite general trend of decreasing modulus with time. The NDT data were not collected often enough to discern definite seasonal variations in subgrade modulus. The nonlinear subgrade behavior described in chapter 2 accounts for the difference in the estimated moduli between lane 1 and lane 2.

Due to the nonlinear behavior of the PTF subgrade soil, the estimated moduli shown in figure 17 may be somewhat higher than those occurring directly under the ALF wheels. To obtain reasonable estimates of the subgrade modulus for performance prediction modeling and NDT structural capacity analyses, an analysis similar to that described in chapter 2 was conducted using the NDT data from the untrafficked reference locations. From the maximum deflection directly under the load plate, the subgrade modulus was calculated using NDT Method 2 and the structural capacity at the reference locations. The reference location structural capacity was calculated using the measured pavement thicknesses, a structural coefficient of 0.14 for the base course and asphalt structural coefficients consistent with the average pavement temperatures measured during the NDT testing. Figure 18 presents laboratory determined asphalt concrete moduli and asphalt concrete structural coefficients based on equation 7 which is used in the AASHTO NDT Method 2 analysis.

$$a_{i}=0.0043[\frac{E_{i}}{(1-v_{i}^{2})}]^{\frac{1}{3}}$$

(7)

where

 $a_i = structural coefficient$

 E_i = resilient modulus

 v_i = Poisson's ratio (0.35 assumed)

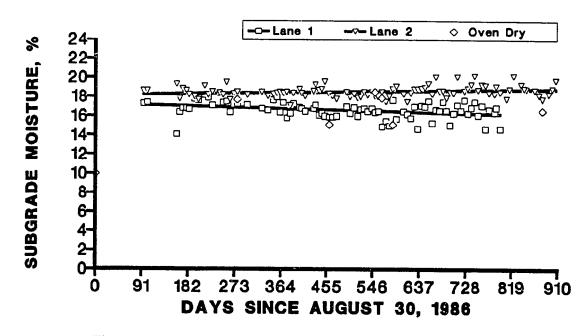


Figure 16. Subgrade moisture contents during phase 1 research.

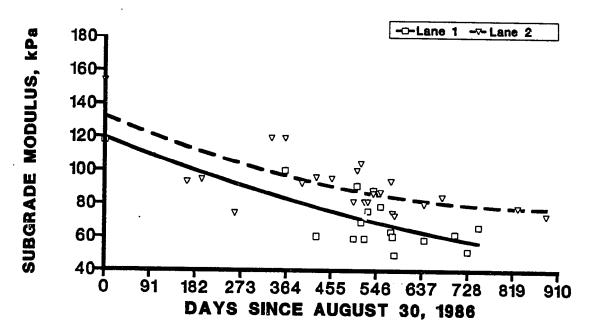


Figure 17. Estimated subgrade moduli from outer sensor NDT deflections.

The results of this analysis for the NDT reference location data base is shown in figure 19. The data base, which is presented in appendix B, contains 84 deflection measurements over a range of pavement temperatures from 0 to 43 °C. Also shown in figure 19 are the results of the analysis for the construction NDT data. Again, the subgrade stiffness clearly increases with increasing structural capacity or rigidity. The reference location data shows a lower stiffness than the construction data, which is probably due to the substantial increase in subgrade moisture content from the asconstructed value of 10 percent to the equilibrium value of 17 percent. Equation 8 presents the estimated in-situ subgrade modulus as a function of structural capacity. Again, the structural capacity can be converted to rigidity using equation 5 from chapter 2.

$E_{so} = 29,870(SN)-25,437$	for SN > 2.0	
$E_{sg} = 34,474$	for SN <u><</u> 2.0	(8)

where

E_{sg} = subgrade modulus in kPa

SN = structural number

 $1 \text{ kPa} = 0.14504 \text{ lb/in}^2$

It is important to emphasize that the NDT presented in figure 19 was conducted on undamaged sections of the pavement. During the conduct of the phase 1 accelerated pavement tests, no attempt was made to keep water from entering cracks which developed in the pavement surface. During the first phase of research it was observed that water infiltration through surface cracks accelerated the rate of damage in the pavement.

PAVEMENT PERFORMANCE

Each of the pavement tests in table 13 are briefly described below, and several summary plots of loading, environment, and pavement performance history are presented. The complete data base is presented in tabular form in appendix C through I.

The first phase of research included testing each lane with three different load levels. For lane 1, loads of 51.6, 62.7 and 73.0 kN (11,600, 14,100, and 16,400 lb) were used while loads of 73.0, 84.5, and 100.1 kN (16,400, 19,000, and 22,500 lb) were used on lane 2. The tire pressure for each test was 689 kPa (100 lb/in²) except lane 2, section 2 which was tested at 965 kPa (140 lb/in²) as part of the tire pressure experiment. Due to time constraints, no replicate tests were conducted, and no attempt was made to minimize the effect of environment. Each test in the data base represents a valid observation of pavement performance for the loading and environmental conditions encountered, and should, therefore, be useful for the validation of mechanistic pavement performance models.

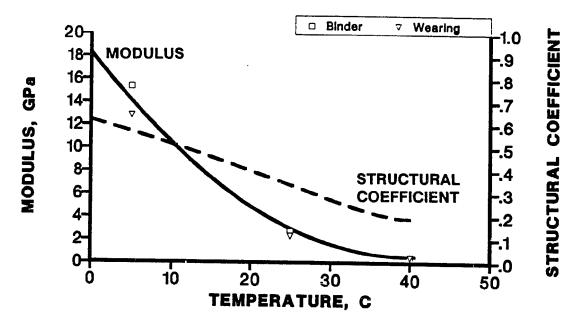


Figure 18. Asphalt concrete moduli and structural coefficients.

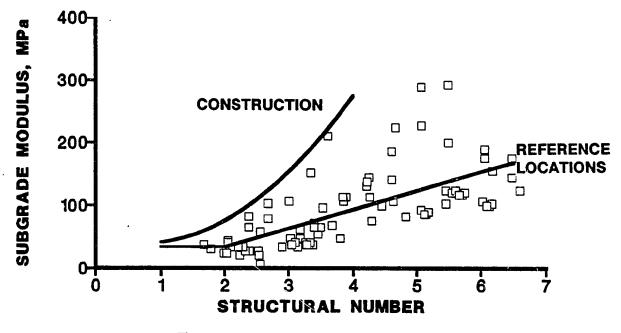


Figure 19. Estimated subgrade moduli.

Loading

The loading and temperature histories for each of the phase 1 pavement performance tests are presented in figures 20 and 21. Lane 2, section 3 was the first accelerated pavement test conducted after the initial ALF shakedown testing on lane 1, section 3. The test was conducted from January 8, 1987 to June 4, 1987. The planned load level and tire pressure were 84.5 kN (19,000 lb) and 689 kPa (100 lb/in²), respectively, but some initial load repetitions were applied using a load of 51.6 kN (11,600 lb). Approximately 5.8 percent of the 502,662 load repetitions were applied using the 51.6 kN (11,600 lb) load. Pavement temperatures were not recorded for this test. Upon completion of the Lane 2, Section 3 test, the ALF was moved longitudinally to Lane 2, Section 2. During the Phase 1 research, two 578 kN (65 ton) cranes working together were used to move the ALF longitudinally between test sections within a given lane. Each move required approximately 2 to 4 hours depending on the distance moved.

Lane 2, section 2 was tested from June 18, 1987 to November 30, 1987. The planned load level and tire pressure were 84.5 kN (19,000 lb) and 965 kPa (140 lb/in²), respectively, but some load repetitions were applied at other load levels and tire pressures as part of the tire pressure experiment. Less than 3 percent of the 578,142 load repetitions were applied at loads other than 84.5 kN (19,000 lb). The performance data for lane 2, sections 2 and 3 were analyzed to determine the effects of increased tire pressure on flexible pavement damage. Reference 9 presents details of this analysis. The ALF was then moved to lane 1, section 2. Cranes were not needed to move the ALF transversely from lane to lane. The linear actuators which provide the lateral movement to simulate traffic wander were used to move the machine between lanes.

The three performance tests in lane 1 were conducted sequentially from December 14, 1987 through April 4, 1988. Lane 1, section 2 was the first section tested. The test was conducted from December 14, 1987 through February 18, 1988. This was the first test which used the semiautomatic profiling device for measuring rutting and roughness. The planned load level and tire pressure for this test were 51.6 kN (11,600 lb) and 689 kPa (100 lb/in²), respectively, but some load repetitions were applied at other load levels and tire pressures as part of the tire pressure experiment. Less than 2 percent of the 147,696 load repetitions were applied at loads other than 51.6 kN (11,600 lb). The ALF was then moved to lane 1, section 4. This section was tested from March 1, 1988 to March 8, 1988 using a load of 73.0 kN (16,400 lb) and 689 kPa (100 lb/in²) tire pressure. Lane 1, section 4 failed after only 1 day of testing. Lane 1, section 1 was the last Lane 1 section tested. This section was tested from March 24, 1988 to April 4, 1988 using a load of 62.7 kN (14,100 lb) and 689 kPa (100 lb/in²) tire pressure.

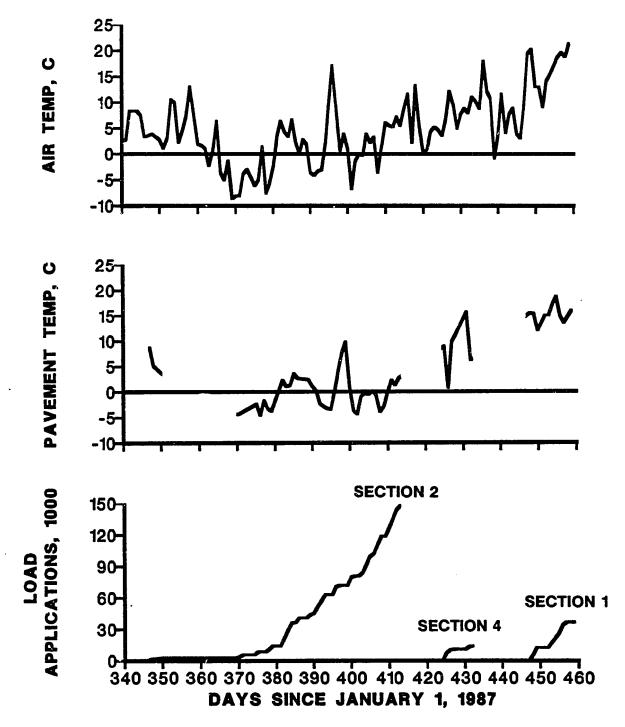


Figure 20. Loading and temperature histories for the lane 1 performance tests.

47

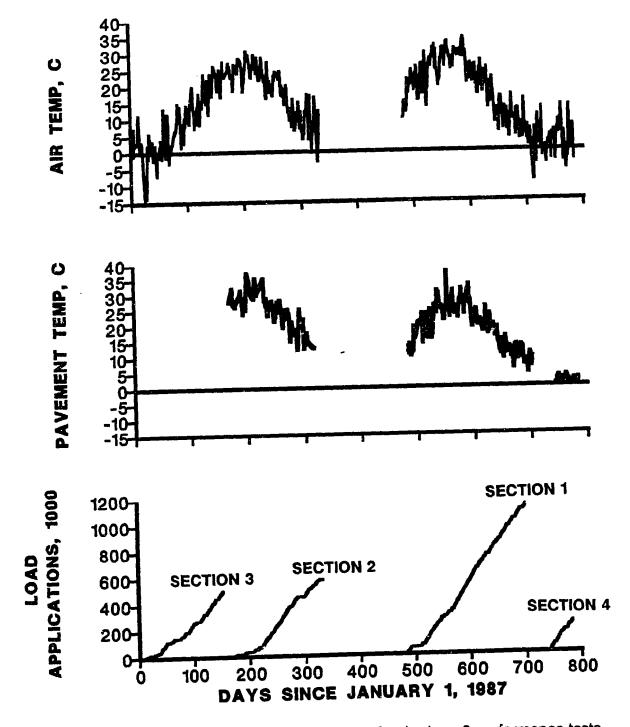


Figure 21. Loading and temperature histories for the lane 2 performance tests.

Upon completion of the lane 1 tests, the ALF was moved to lane 2, section 1. This section was tested from March 29, 1988 to December 12, 1988 using a load of 73.0 kN (16,400 lb) and 689 kPa (100 lb/in²) tire pressure. Over 1.1 million load repetitions were applied to lane 2, section 1 during the testing period. The ALF was then moved to the final test section, lane 2, section 4. This section was tested from January 9, 1989 to February 23, 1989 using a load of 100.1 kN (22,500 lb) and 689 kPa (100 lb/in²) tire pressure.

Rutting, Cracking, Present Serviceability Index

Figures 22 and 23 summarize the rutting, cracking, and PSI loss data for the lane 1 and 2 test sections, respectively. These figures represent average rutting and cracking and were obtained by averaging the data from the eight data collection subsections shown in figure 11. For most of the phase 1 tests, the pavement damage was highly variable along the test section as shown in figures 24 and 25. Three factors contributed to the variability in damage along the test section.

The first factor was spacial variations in the thickness and properties of the pavement materials and subgrade soil. During the first phase of research, no special precautions were taken to reduce construction variability. The tolerances specified in the Virginia Department of Highways and Transportation specifications governed the phase 1 pavement construction.⁽¹⁾ Typical highway construction variability condensed into a short test section can have a large influence on the performance of the pavement within the test section.

Second, the performance of lane 2, section 3 and lane 2, section 4, was influenced by previous coring within the ALF wheelpath. For a research project concerning the in-situ measurement of asphalt concrete density, several 102 mm (4 in) diameter cores were removed from random locations within the PTF shortly after construction. The cores were taken before the ALF test sections were laid out and, due to the limited space available, the test section locations could not be adjusted to avoid having core sample locations in these two sections. The core locations were at Station 39.0 m (128 ft) in lane 2, section 3, and Station 49.7 m (163 ft) in lane 2, section 4. Although the core holes were filled with compacted cold-mix asphalt concrete patching material, increased rutting and cracking were observed in the vicinity of the core sample locations in both test sections.

The final factor affecting the distribution of damage within the test sections was the dynamic loading of the ALF. Recall from figure 10, the ALF applied a significant dynamic loading component, particularly at the lighter load levels. Due to this dynamic effect, the loading for the first 1.22 m (4 ft) of the test section could be 14 kN (3150 lb) lighter than the static weight, while the loading for the second 1.22 m (4 ft) section could be 10 kN (2250 lb) heavier than the static weight. Except at the 41.8 kN (9,400 lb) load level, the dynamic effect dampened out by the third 1.22 m (4 ft) section.

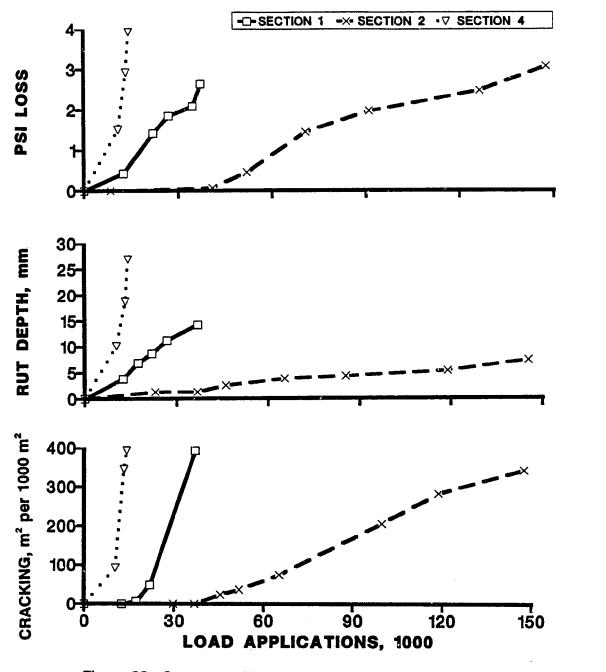
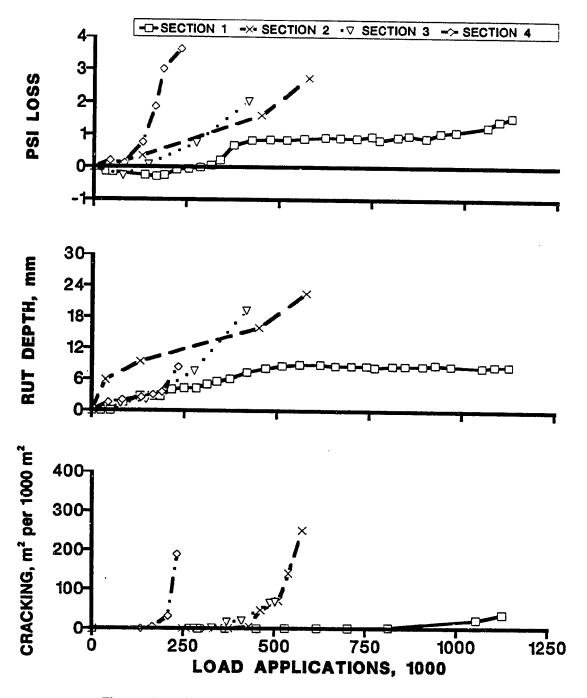
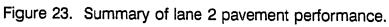




Figure 22. Summary of lane 1 pavement performance.

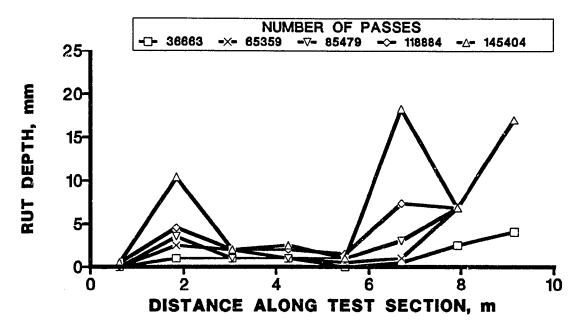


Figure 24. Distribution of rutting within lane 1, section 2.

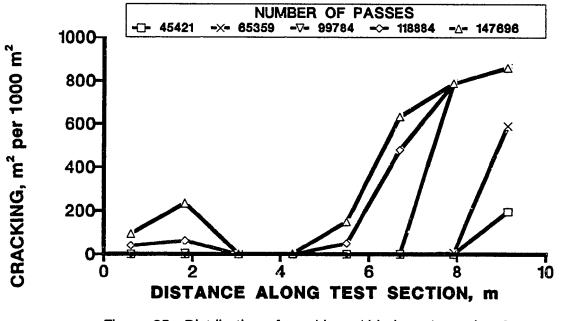


Figure 25. Distribution of cracking within lane 1, section 2.

Figures 24 and 25 show the effect of the dynamic loading on pavement damage. The rutting and cracking in the first data collection subsection are significantly lower and the data in the second subsection are significantly higher than the remainder of the test section.

The average pavement performance data shown in figures 22 and 23 follow the general trends observed through monitoring of various test roads and inservice pavement sections. The rapid deterioration of the pavement after fatigue crack initiation was clearly evident in all of the test sections. For all test sections, the fatigue cracks initiated transverse to the direction of travel of the ALF. After repeated load applications, longitudinal and additional transverse cracks appeared, resulting in the block or alligator cracking typical of fatigue failure.

The damaging effect of increasing load level is clearly evident in the cracking and PSI loss data. Table 14 summarizes the number of load applications required to reach average wheelpath cracking of 5 percent and PSI loss of 2.0. To obtain the percent wheelpath cracking, the cracking data in figures 22 and 23 were multiplied by 1.4, the ratio of the width of the ALF wheelpath to the 1.83 m (6 ft) width used as a basis in the collection of the cracking data. The data in table 14 were then used to develop damage relationships smiliar to the fourth power law established at the AASHO Road Test. Table 15 presents load and damage ratios calculated from the data of table 14. Regression analyses on these data indicated a power relationship with an exponent of

			LOAD APPLICATIONS		
LANE	SECTION	LOAD, KN	5% CRACKING	2.0 PSI LOSS	
1	1	62.7	21,600	31,200	
1	2	51.6	54,000	92,400	
1	4	73.0	6,000	12,000	
2	1	73.0	1,150,000	1,230,000 ¹	
2	· 2	84.5	455,000	500,000	
2	3	84.5	445,000	420,000	
2	4	100.1	210,000	170,000	

Table 14. Load applications to 5 percent wheelpath cracking and 2.0 PSI loss.

¹ Extrapolated

1 kN = 224.809 lb

		DAMAGE RATIO		
LANE	LOAD RATIO	CRACKING	PSI LOSS	
1	1.16	3.60	2.60	
1	1.22	2.50	2.96	
1	1.41	9.00	7.70	
2	1.16	2.53	2.46	
2	1.16	2.58	2.93	
2	1.18	2.17	2.94	
2	1.18	2.12	2.47	
22	1.37	5.48	7.23	

Table 15. Damage ratios for phase 1 performance tests.

approximately 6.0 provided a reasonable fit to the data. Separate regression analyses for cracking and PSI loss yielded exponents of 5.8 and 6.1, respectively. Figure 26 presents a comparison of the damage relationship developed from the phase 1 data with the fourth power law. From this comparison, it is apparent that load had a significantly greater effect on the performance of the phase 1 test sections than would be predicted by the fourth power law. This finding can not be entirely attributed to the slow speed and continuous loading of the ALF machine. Other factors including the nonlinear, stress softening behavior of the PTF subgrade soil, differences in environmental conditions during testing of each section, and between section variability in layer thicknesses, and material properties must also be considered as potential causes of the higher damage exponent derived from the phase 1 PTF tests.

The phase 1 rutting data show the effects of temperature and cracking on the permanent deformation behavior of the test sections. For three of the lane 2 sections (section 1, section 3, and section 4) traffic loading began during relatively cool weather conditions. For these sections, the observed rutting early in the pavement life was small and was very similar in spite of the different load level used on each section. On the other hand, traffic loading for section 2 of lane 2 began during relatively hot weather conditions. This test section exhibited a large amount of early rutting. Finally, section 2 of lane 1 and sections 2 and 4 of lane 2 showed a significant increase in the rate of rutting after the initiation of fatigue cracking in the pavement. Increasing temperatures appear to have masked this effect in section 3 of lane 2, while little cracking was observed in lane 2, section 1. Sections 1 and 4 of lane 1 cracked so quickly that initial rutting data were not collected.

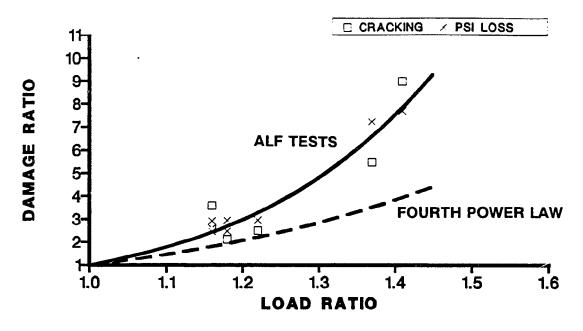


Figure 26. Phase 1 load damage relationship.

NDT and Pavement Responses

NDT was performed periodically with a falling weight deflectometer during each of the Phase 1 accelerated load tests. NDT data were collected at selected locations, both in and out of the wheelpath, prior to trafficking the test section and at three to five times during the testing period. The raw NDT data are presented with the pavement performance data in appendixes C through I. Planned analyses included the backcalculation of moduli for each pavement layer. The nonlinear subgrade behavior described previously, however, resulted in unrealistic layer moduli when layered elastic basin analysis methods were used. The subgrade typically converged to moduli in the 68.9 to 103.4 kPa (10,000 to 15,000 lb/in²) range, while the crushed aggregate base generally converged to lower moduli. These results were inconsistent with the laboratory data and observations concerning the consistency of the materials during the post failure evaluations; therefore, no backcalculated layer properties were presented in this report. Backcalculations assuming nonlinear material behavior were beyond the scope of the phase 1 research effort.

The development of structural distress in the test sections was, however, tracked using AASHTO NTD Method 2. Recall for NDT Method 2, the deflection at the middle of the load plate was related to the subgrade modulus and the structural number through equation 4 in chapter 2. Since the PTF subgrade was nonlinear, the subgrade modulus as a function of structural capacity was estimated using equation 8 which was developed from NDT tests at the untrafficked reference locations. Thus, the effective structural number was obtained by simultaneous solution of equations 4 and 8. By performing this analysis on data from both in and out of the wheelpath, the structural condition factor, C_{xeff} , could be estimated.

$$C_{xoff} = \frac{SN_x}{SN_o} \approx \frac{SN_{xwp}}{SN_{xout}}$$

where

 $\begin{array}{l} C_{xeff} = \mbox{structural condition factor} \\ SN_{xeff} = \mbox{effective structural number after traffic x} \\ SN_o = \mbox{initial structural number} \\ SN_{xwp} = \mbox{effective structural number after traffic x in wheelpath} \\ SN_{xout} = \mbox{effective structural number after traffic x out of wheelpath} \end{array}$

Figures 27 and 28 present the structural condition factor as a function of traffic loading for the tests on lanes 1 and 2, respectively. As expected, the three tests on the lane 1 sections and two of the lane 2 tests (sections 2 and 4) show a significant decrease in the structural condition factor with traffic loading. The condition factor for these tests reached a value of approximately 0.6 when traffic was stopped. Thus, at the end of trafficking, these test sections had approximately 60 percent of their original structural capacity remaining. Two of the lane 2 sections (section 1 and section 3), however, showed little decrease in the structural condition factor as a result of the traffic loading. Referring to the cracking data in figure 23, these two sections exhibited significantly less surface cracking. Figure 29 presents the relationship between structural condition factor and observed surface cracking (AASHTO Type 2 and 3) developed from the seven phase 1 tests. This figure shows the structural condition factor can reach a value of approximately 0.8 prior to the development of significant wheel path cracking.

A similar finding was made using measured strains from the strain gauges installed at the bottom of the asphalt layer. Several of the "H" type strain gauges installed in lane 2, section 3 remained operational throughout most of the testing period. Additionally, strain gauges that were retrofitted by bonding gauges to cores and epoxying the cores in the pavement remained operational in lane 2, section 1 for over 1,000,000 load repetitions. Figure 30 present plots of the measured strain at the bottom of the asphalt layer as a function of the number of load repetitions. The influence of pavement temperature during the testing period is clearly evident in this data. For the lane 2, section 3 test, the pavement temperature increased throughout the testing period. For lane 2, section 1, the temperature increased then decreased.

(9)

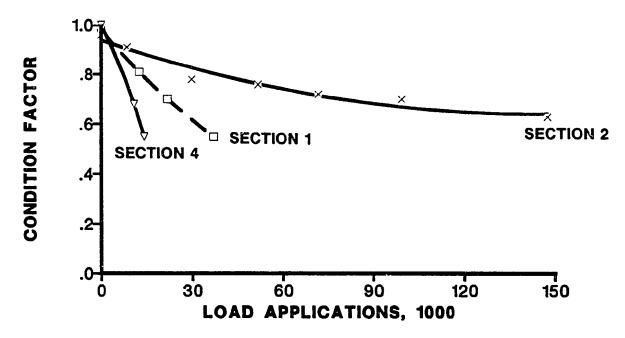


Figure 27. Structural condition factor for lane 1 tests.

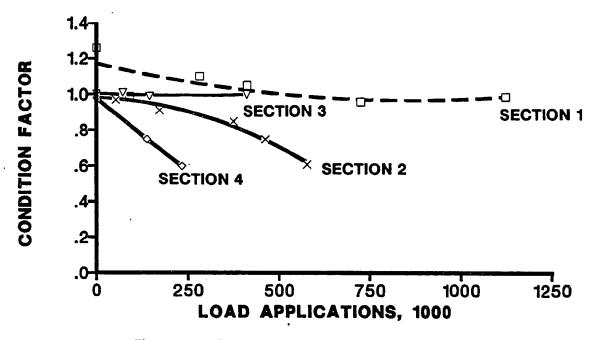


Figure 28. Structural condition factor for lane 2 tests.

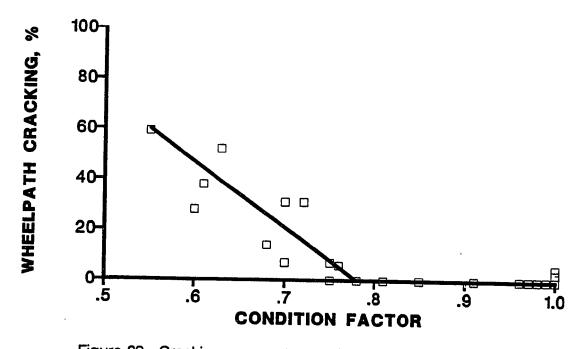


Figure 29. Cracking versus structural condition factor, phase 1 tests.

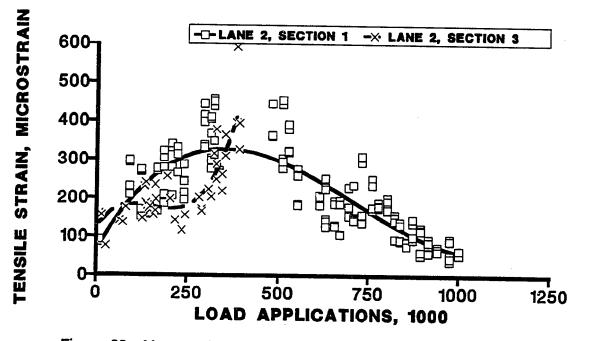


Figure 30. Measured strains for lane 2, section 3 and lane 2, section 1.

In an attempt to analyze the strain data to determine the magnitude of the fatigue damage in the asphalt layer, the measured strains were compared to strains predicted from layered elastic analysis. To account for the variation in pavement temperature, and the nonlinear subgrade behavior, pavement temperatures measured during the collection of the strain data were used to estimate asphalt concrete moduli and layer coefficients from figure 19. These layer coefficients were used with measured pavement thicknesses to determine the structural number and to estimate the subgrade modulus from equation 8. Strains corresponding to these moduli were then calculated from layered elastic theory using the corresponding ALF wheel loading and an average base course modulus of 206.8 kPa (30,000 lb/in²). The difference between the measured and predicted strains can be attributed to damage in the asphalt layer.

Figures 31 and 32 present the ratio of the measured to predicted strains as a function of load repetitions. No distinct trend is apparent in the lane 2, section 3 data; however, for the lane 2, section 1 data, there is a definite decrease in the strain ratio after approximately 800,000 load cycles. This decrease implies the development of cracks outside the active area of the strain gauges. An increase in strain ratio would be expected if the cracks occurred within the active area of the gauges. This concept is shown schematically in figure 33. Case 2 of figure 33 shows the development of a single crack within the active area, and case 3 shows the development of cracks outside the active area. For case 2 the measured strains would increase over those for the intact pavement (case 1), while for case 3, the measured strains would decrease. Since the active area of the gauge is small compared to the pavement, case 3 would most likely occur. Thus, from the strain data, cracks occurred in the vicinity of the strain gauges in lane 2, section 1 after approximately 800,000 load repetitions, while no cracks occurred in lane 2, section 3 through approximately 400,000 load repetitions. Referring to figure 23, significant surface cracking for these two pavements occurred after 1,000,000 and 500,000 repetitions, respectively

Postfailure Investigations

After each of the phase 1 test sections failed, a postfailure investigation was conducted to document the condition of each pavement layer. Figures 34 and 35 present layer profiles obtained during the post failure investigations. For the lane 2 tests, no rutting was observed in the subgrade; therefore, only the profiles of the pavement surface and the surface of the crushed aggregate base are shown in figure 35. For most of the phase 1 tests, the majority of the rutting occurred in the crushed aggregate base layer. Rutting in the subgrade was only observed for tests using heavy loads on the thin pavement structure of lane 1. Permanent deformation in the asphalt layer was small for all tests. Even lane 2, section 1 and lane 2, section 2, which were tested primarily during hot weather, exhibited less than 10 mm (0.39 in) of rutting in the asphalt concrete.

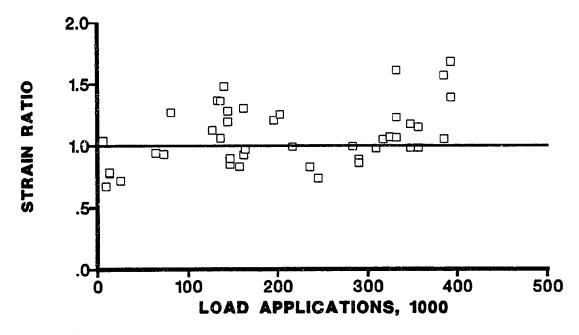
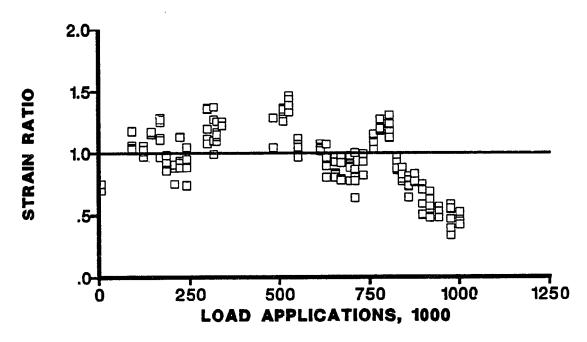
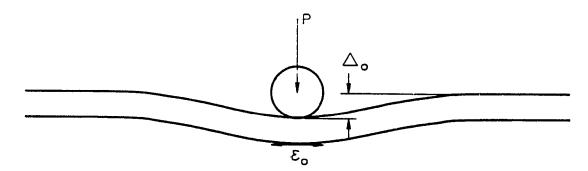
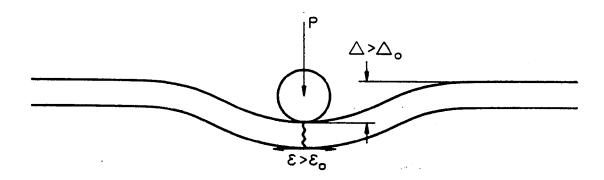
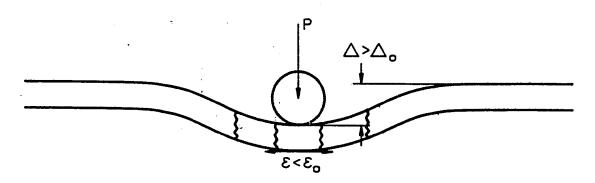


Figure 31. Ratio of measured to predicted strains for lane 2, section 3.


Figure 32. Ratio of measured to predicted strains for lane 2, section 1.

Case a. Uncracked pavement.

Case c. Multiple cracks outside active area of gauge.

Figure 33. Schematic of measured strains and crack location.

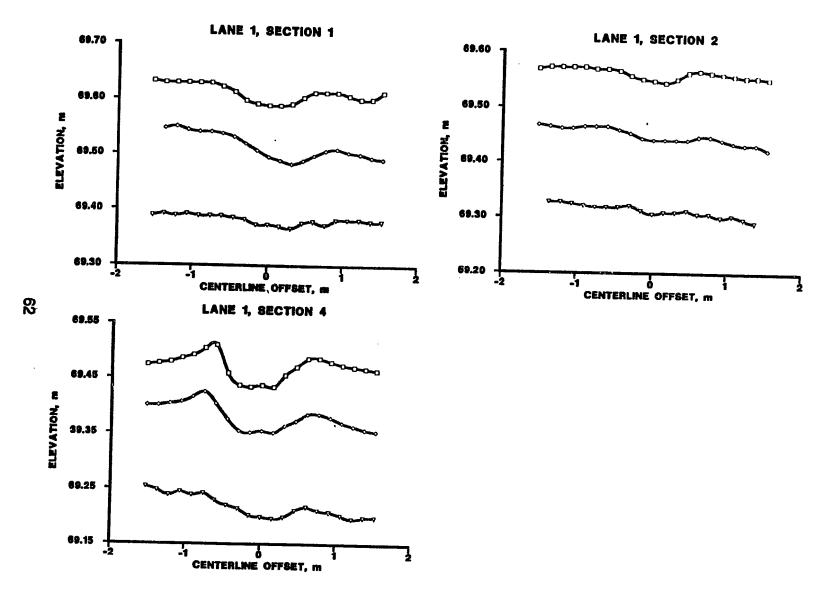


Figure 34. Postfailure profiles for lane 1.

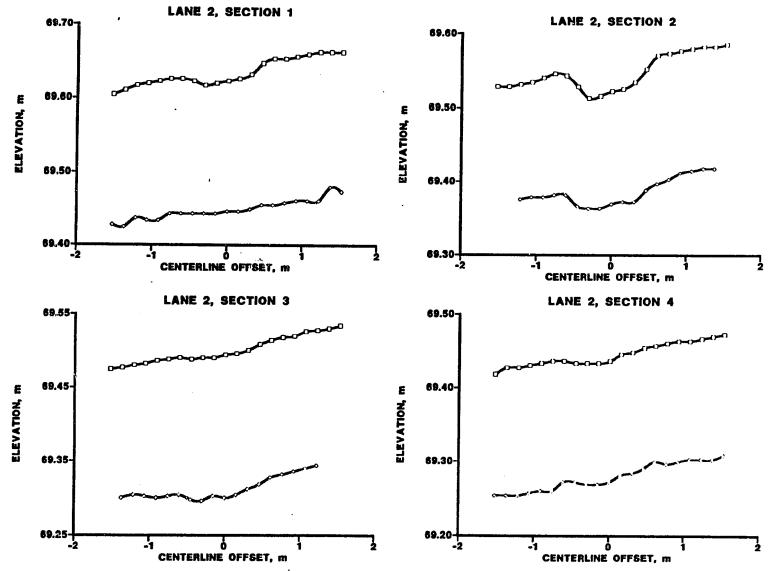


Figure 35. Postfailure profiles for lane 2.

ജ

Tables 16 and 17 summarize the moisture content and density of the base and subgrade soil measured during the post failure investigations. The nuclear density equipment used during the postfailure investigations was not operating properly for the investigations on sections 2 and 3 of lane 2; therefore, no density data were reported for these tests. Additionally, the density data from construction appear suspect as they are significantly higher and have greater scatter compared to the post failure data. The density data in table 16 show densification in the crushed aggregate base to be a cause of the rutting in this layer of the pavement. At the representative density of 2303 kg/m³ (143.8 lb/ft³), the crushed aggregate base layer was compacted to only 94 percent of AASHTO T-180 maximum dry density. Densification under heavy traffic loads should be expected for this level of compaction. The crushed aggregate base used in the phase 1 test was approximately 50 to 70 percent saturated at the in-situ density and moisture content. Previous research concerning the response of granular materials to repeated loads, showed a critical saturation level of 85 to 90 percent above which large permanent deformation should be expected.⁽¹²⁾ The moisture contents from the post failure investigations confirm the conclusions from the moisture cells concerning the subgrade moisture content during the phase 1 tests. The subgrade moisture content increased from the as constructed value of 10 percent to approximately 17 percent prior to trafficking the test sections. During this same period the base course moisture content increased from 3.2 to 5.4 percent. Both the subgrade and the base course moisture contents then remained relatively constant throughout the testing period.

The air void contents of cores taken both in and out of the wheelpath during the post failure investigations are summarized in table 18. These data show a large between test section variation in air void content, particularly for the binder layer. Comparing the in versus out of wheelpath air voids indicates very little densification occurred in the wearing course of most of the test sections. In fact, the binder voids suggests dilation under traffic loading as several of the sections have wheel path voids which are greater than the out of wheel path voids. Plastic heave in the asphalt layer was only observed in lane 2, section 1. Figure 36, presents typical transverse profiles obtained with the semiautomatic profiling device at various times during the testing of lane 2, section 1. Note the dual tire tracks and the plastic heave outside the wheelpath. All of the rutting shown in this figure occurred in the asphalt concrete. From table 18, the air void content of the asphalt concrete in this test section was extremely low, 2.63 percent for the wearing course and 1.82 percent for the upper lift of binder.

SUMMARY

This chapter summarizes the results of the phase 1 accelerated pavement performance tests. Sections in each lane were tested with three different load levels. Loads of 51.6, 62.7, and 73.0 kN (11,600, 14,100, and 16,400 lb) were used for lane 1, while lane 2 was tested with loads of 73.0, 84.5, and 100.1 kN (16,400, 19,000, and

	Statistic	Dry Density, pcf		Moisture, %	
As-built	Avg	2550		3.18	
	σ	104.6		0.26	
Section	Statistic	In	Out	In	Out
L1S1	Avg	2382	2364	5.5	5.3
	<i>o</i>	43.4	46.4	0.60	0.41
L1S2	Avg	2294	2250	5.2	5.5
	<i>o</i>	56.8	74.6	0.25	0.23
L1S4	Avg	2271	2207	5.5	5.6
	<i>o</i>	56.0	90.0	0.43	0.29
L2S1	Avg σ	2279 23.5	2250 59.7	4.7 0.10	5.0 0.46
L2S2	Avg <i>o</i>				
L2S3	Avg <i>o</i>				
L2S4	Avg	2318	2283	5.6	5.6
	σ	51.1	34.9	0.36	0.15

Table 16. Postfailure base course density and moisture contents.

 $1 \text{ kg/m}^3 = 0.0624280 \text{ lb/ft}^3$

.

.

•

.

	Statistic	Dry Dens	sity, kg/m ³	Mois	ture, %
As-built	Avg <i>o</i>		925 6.6		0.0 .37
Section	Statistic	In	Out	In	Out
L1S1	Avg	1791	1820	14.9	15.0
	σ	52.2	71.8	0.50	2.05
L1S2	Avg	1700	1706	16.6	16.4
	o	34.9	28.4	0.83	0.88
L1S4	Αvg	1765	1728	15.5	16.4
	σ	49.5	44.0	0.85	0.98
L2S1	Αvg	1807	1781	17.9	19.1
	σ	42.1	28.2	0.52	1.71
L2S2	Avg <i>o</i>				
L2S3	Avg σ				
L2S4	Avg	1818	1821	16.6	16.4
	o	37.8	34.1	0.62	1.61

Table 17. Postfailure subgrade density and moisture contents.

 $1 \text{ kg/m}^3 = 0.0624280 \text{ lb/ft}^3$

			AIR VOID CONTENT, %									
	·····	Wea	aring	Upper	Binder	Lower	Binder					
Section	Statistic	In	Out	in	Out	In	Out					
L1S1	Avg σ	4.77 0.58	4.24 0.67	4.63 0.96	3.34 0.71							
L1S2	Avg σ	4.84 0.67	4.85 0.50	3.10 0.96	2.64 1.14							
L1S4	Avg <i>o</i>	5.10 0.66	4.46 0.81	4.63 1.03	4.34 1.06							
L2S1	Avg σ	2.70 0.64	2.63 0.95	1.63 0.63	1.82 0.70	3.08 0.96	3.12 0.95					
L2S2	Avg σ	4.28 0.21	5.63 0.55	5.76 0.94	7.59 1.22	2.91 0.32	4.22 0.76					
L2S3	Avg o	3.39 0.24	4.07 0.51	3.23 1.17	1.60 0.38	2.83 0.53	3.30 0.53					
L2S4	Avg 	5.42 1.48	5.95 0.72	3.62 1.30	4.07 0.97	3.55 1.18	5.02 1.19					

Table 18. Postfailure asphalt concrete air void contents.

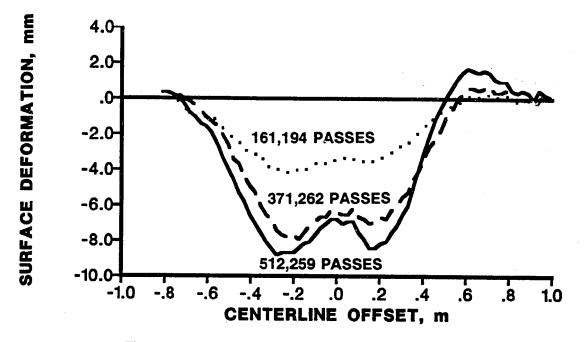


Figure 36. Typical lane 2, section 1 transverse profiles.

22,500 lb). Rutting, cracking, PSI, NDT, and pavement strain data were used to monitor the performance of the test pavements as a function of the number of load applications. The performance histories followed the general trends observed through the monitoring of various test roads and inservice pavement sections. The NDT and pavement strain data indicated a significant loss of structural capacity occurred prior to the development of cracks at the pavement surface. Fatigue failure was the predominant failure mode for the phase 1 test sections. Excessive rutting in the test sections did not develop until after the asphalt concrete was severely cracked. Post failure tests conducted on each section showed the majority of the rutting occurred in the crushed aggregate base layer. Rutting in the asphalt layer was small in all test sections, including lane 2, section 1 which exhibited rutting only in the asphalt concrete.

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

Overall, the first phase of research at the PTF was very successful. Each of the phase I research objectives were met, and considerable operation, data collection, and data analysis experience were gained. This experience lead to the development of recommendations to enhance the capabilities of the ALF and the PTF for future research projects. Specific phase I conclusions and recommendations are discussed below.

CONCLUSIONS

A major portion of the phase I research effort was devoted to the development of routine operating and data collection procedures for the ALF and the PTF. Procedures for two modes of operation, response testing and accelerated loading, were established for the ALF. The response testing mode made use of the ALF's variable loading and lateral position capabilities, and the pavement instrumentation. Response testing formed a key element of the tire pressure study completed during the first phase of research.⁽⁹⁾ The second mode of operation, accelerated testing, took advantage of the continuous operating capability of the ALF machine. During accelerated testing, the ALF was operated 24 hours per day, 7 days per week. Typical phase 1 productivity statistics for this mode of operation were 65 percent operating, 7 percent failure, and 28 percent standby based on 168 hours per week. This level of operating efficiency was attained by staffing the facility with two operators working a normal 40 hour work week. Additional operating time could be realized through additional staffing, particularly on weekends.

During the first phase of research, the ALF was operated in both the response and accelerated testing modes using its complete range of loads: 41.8 to 100.1 kN (9,400 to 22,500 lb). Based on observations and maintenance records during operation at each load level, an optimal load range of 51.6 to 84.5 kN (11,600 to 19,000 lb) was established. At loads lighter than the 51.6 kN (11,600 lb) level, the dynamic load induced when the ALF wheel assembly contacted the pavement did not quickly dampen. At the 100.1 kN (22,500 lb) load level, down time and component repair costs increased significantly. This optimal load range should be considered in the planning of future experiments.

Instrumentation, equipment, and procedures were also established during the first phase of research for routine data collection and analysis. Routine data included environmental (air and pavement temperature, precipitation, and subgrade moisture), pavement response (strains and deflections), and pavement performance (rutting, cracking, roughness, PSI, NDT, and postfailure investigation). A computer based data acquisition system and software were developed during the first phase of research for acquiring, analyzing, and storing pavement response and performance data. An inexpensive "H" type strain gauge was developed to measure strains at the bottom of the asphalt concrete. Techniques for installing the gauge at the interface between the crushed aggregate base and the subgrade proved successful as all of the gauges were operational immediately after construction. The long-term durability of the gauges, however, was poor with most of the gauges failing within 1.5 years after construction. Many of the failures occurred prior to traffic loading and were the result of environment effects. Those gauges which survived the environmental effects generally failed early in the life of the pavement. Several strain gauges were retrofitted using a technique developed in Finland. This retrofit technique appears promising. In one test, the retrofit gauges remained operational for over 1,000,000 load repetitions. A semiautomatic surface profiler was also developed during the phase 1 research effort. Using this device accurate longitudinal and transverse profiles were quickly obtained at various times during the life of the pavement.

Perhaps the most important objective of the phase 1 research program was the assessment of the pavement performance and response data collected using the ALF pavement testing machine. The performance data assessment was mainly qualitative. This assessment was accomplished by comparing the general trends and failure modes obtained with the ALF to expected trends and failure modes based on previous test road, inservice pavement, and computer simulation experience. The ALF device accelerates pavement damage primarily through the use of extremely heavy loads. There was concern that these heavy loads operating at slow speeds would induce atypical failure modes in the test pavements. The results of the phase 1 research showed this to be a valid concern for the thin pavement structure of lane 1. Loads of 62.7 and 73.0 kN (14,100 and 16,400 lb) induced significant subgrade rutting in lane 1 while the 51.6 kN (11,600 lb) load did not. Expected performance was observed for the lane 2 tests through the maximum ALF load of 100.1 kN (22,500 lb). Overall, the pavement performance data collected with the ALF followed the general trends expected based on previous test road, inservice, and computer simulation experience. Fatigue cracking was the predominant failure mode. Excessive rutting in the subgrade was observed only for the thin pavement structure of lane 1 when trafficked with very heavy loads.

The effect of load on cracking and PSI loss was significantly greater than predicted by the fourth power law. For the phase 1 tests the damage exponent was approximately 6.0. This result can not be entirely attributed to the slow speed and continuous loading of the ALF machine. Other factors including the nonlinear, stress softening behavior of the subgrade soil, differences in environmental conditions during testing, and between section variability in layer thicknesses and material properties must also be considered as potential causes of this higher damage exponent.

A more quantitative assessment of the pavement response data was conducted as part of the phase 1 research effort. This assessment showed the measured strains and deflections were in general agreement with the results of layered elastic analyses. In the layered analysis, an important consideration was the nonlinear, stress softening behavior of the PTF subgrade soil. The effective subgrade stiffness was shown to increase dramitically with the rigidity of the pavement. For modeling the PTF subgrade, moduli ranging from 34.5 to 68.9 kPa (5,000 to 10,000 lb/in²) should be used for the thin pavement structure of lane 1, while a range of 68.9 to 137.9 kPa (10,000 to 20,000 lb/in²) should be used for the thicker lane 2 pavement. For high pavement temperatures and heavy loads, values near the low end of these ranges should be selected. Values near the high end should be used with low pavement temperatures and lighter loads.

In spite of the nonlinear subgrade behavior, NDT data collected during the first phase of research provided an excellent method for tracking structural damage in the pavement. An analysis of the NDT data using AASHTO Method 2 showed the structural condition factor, C_{xeff} , reached a value as low as 0.80 before cracking appeared at the pavement surface. A reasonable correlation between the structural condition factor and the extent of pavement cracking was developed using all of the phase 1 NDT data. Average structural condition factors reached approximately 0.60 for test sections with high levels of cracking.

The tire pressure study conducted during the first phase of research made extensive use of the pavement strain data from early in the life of the test pavements. This study showed tire pressure was not a significant factor in the fatigue damage of the PTF test sections.⁽⁹⁾ The pavement strain data, however, proved less successful for tracking fatigue damage during the accelerated load testing. Most of the gauges failed early in the pavement life, but for those that remained operational their ability to quantify the extent of damage in the asphalt layer depended on the location of the cracks relative to the strain gauge. If cracks occur outside the active area of the gauge, the measured strain for the cracked condition will be less than that for the uncracked pavement, and the strain data cannot be used to estimate an effective modulus for the asphalt layer. If cracks occur only in the active gauge area, then the measured strain for the cracked pavement will be greater than that for the uncracked pavement, and an effective modulus can be computed from layer theory. Since the active area of the gauge is small compared to the pavement, it is most likely that cracks will occur outside the active area, making it impossible to use the strain data to estimate a reduced modulus for the asphalt layer. Since surface defelctions represent an average response of the pavement over a fairly large influence area, they appear better suited for estimating effective asphalt moduli than the strain at the bottom of the asphalt layer which represents the response at a single point. The strains, however, can be used to detect the onset of fatigue failure in the payement.

Finally, the pavement performance and response data from the first phase of research has been summarized in this report. This data base should be useful in various mechanistic/empical model development and validation efforts. Although environmental conditions could not be controlled, the phase 1 tests represent valid

observations of pavement response and performance for the loads and environmental conditions encountered. The data from three load levels on the same nominal pavement thicknesses should be useful in verifying the ability of mechanistic/empirical design procedures to predict the observed failure mode.

RECOMMENDATIONS

The pavement performance data from the phase 1 test sections was highly variable along the length of the section. This variability was caused primarily by two factors: spacial variations in pavement thickness and material properties, and the dynamic loading applied by the ALF machine. Although both of these factors also exist on actual pavements, they should be minimized to obtain reliable data from future ALF tests.

Thickness and material variability can be minimized by specifying construction tolerances which are commensurate with the required level of variability based on the objectives of the experiment. For contracting convenience, the Virginia Department of Transportation specifications were used in construction of the phase 1 test sections. As is the case with most highway specifications, the tolerances in these specifications establish minimum levels. They do not necessarily ensure uniformity, which is the primary concern for the PTF pavement sections. For example, under the Virginia specifications, additional grading is not required for excessive base course thickness. The contractor is not paid for the extra thickness, but the material is permitted to remain in place. Required construction tolerances should be established as part of the experimental design for future PTF experiments. If the required tolerances are more restirctive than those typically used in highway construction, additional funding should be provided to cover the cost of the work.

To minimize the dynamic loading applied by the ALF, requires modification of the trolley assembly and the load pickup mechanism. On the Austrailian ALF, this was accomplished by replacing the original mechanical lift mechanism with a hydraulic actuator. FHWA considered the hydraulic system for the US ALF, but rejected it due to potential problems caused by leaking hydraulic fluid. A engineering analysis of various trolley modifications and lift mechanism alternatives was conducted with the objective of minimizing the load variation along the pavement. This analysis resulted in the recommendation of the replacement of the current lift mechanism with a cam actuated mechanism. Design and fabrication of the new lift mechanism is scheduled for the phase 2 research program.

The capabilities of the ALF are best suited to comparative studies. Future research using the ALF should, therefore, be designed as comparative experiments. During the first phase of research, it was demonstrated that the ALF can easily be moved between two adjacent lanes using the actuators which provide the machine's

lateral movement capability. Through proper positioning of the test sections, this lateral movement capability can be used to limit the effect of the environment during comparative testing. By alternating the ALF between adjacent test sections on a weekly, or perhaps more frequent basis, the effect of the environment can be eliminated from the comparative tests. Although environmental conditions will vary during the testing, the variation will be the same for both test section. To effectively use this lateral movement capability, an additional set of transverse rails and linear actuators should be purchased. Also, the test sections at the PTF should be relocated to provide a series of parallel test lanes. Using the space currently allocated to the PTF, 12 adjacent test sections could be constructed if the pavements were rotated 90 degrees. Rotating the test sections would also provide greater accessibility during test pavement construction.

Consideration should be given to providing environmental control for the PTF. If the parallel test lane concept recommended above is adopted, a moveable building could be designed to cover two, or perhaps three test sections. Prior to testing, the pavement sections would receive normal environmental exposure. The moveable building would only provide environmental control during the accelerated load testing. The building could also be moved out of the way for test pavement construction. Finally, the environmental control could be added in stages. The building could be initially built with a minimal environmental control system, then upgraded in the future as additional funding becomes avaliable.

APPENDIX A. CONSTRUCTION NONDESTRUCTIVE TESTING

lest					Load,	Meas	ured De	flectio	ns, mil:	s		Composi	ite Modu	lus, ps	i
No.	Lane	Sec	: Sta	Off	lb	.0	8.3	13.0	20.1	31.9	.0	8.3	13.0	20.1	31
1	1	1	35	R	5973	70.0	44.9	18.2	10.0	4.6	8066	4814	7185	8281	112
2	1	1	35	L	7415	67.4	44.1	19.6	8.4	4.2	10399	6084	8282	12239	153
3	1	1	42	R	5047	78.5	46.4	23.4	10.3	12.6	6077	3936	4722	6794	34
4	1	1	42	L	5973	74.9	41.8	17.8	8.4	4.4	7538	5171	7346	9859	118
5	1	1	49	R	6463	71.3	40.4	18.4	12.8	4.7	8568	5789	7690	7001	119
6	1	1	49	L	5252	64.6	41.5	18.2	11.4	7.4	7685	4579	6317	6387	61
7	1	2	70	R	7003	87.6	38.7	18.7	9.4	4.4	7556	6548	8198	10329	138
8 9	1	2 2	70	L	6179	90.7	39.6	18.4	8.5	4.4 4.7	6439	5646	7352	10079	122
10	1	2	77	R	5355	91.5	43.0	20.6	9.6	4.7	5532	4506	5691	7734	99
11	1	2	77	L	4944	74.4	39.2	18.7	9.8	5.0	6281	4564	5788	6995	85
12	1	2	84	R	6282	88.7	38.3	18.3	8.5	4.5	6694	5935	7515	10247	121
13	1 1	23	84	L	6076	74.1	34.1	15.9	8.5	4.5	7751	6448	8366	9911	117
14	1	3	105	R	4120	87.8	41.1	17.3	8.1	6.3 5.3	4436	3627	5214	7052	56
15	1	3	105	Ľ	5664	87.4	34.1	15.9	7.8	5.3	6126	6010	7799	10068	92
16	4		112	R	3502	61.0	38.3	17.0	7.5	3.8	5427	3309	4510	6474	80
17	1	3 3	112	L	5870	87.2	34.8	15.1	7.2	3.6 4.3	6363	6104	8510	11303	141
18	-	3	119	R	6179	89.8	37.1	16.0	8.4	4.3	6504	6027	8454	10199	124
19	1	4	119 140	L	6385	88.1	33.0	15.0	8.2	3.8	6851	7001	9319	10796	146
20	1	4		R	5355	82.5	30.3	16.3	7.7	12.0	6135	6395	7192	9642	38
21	i	4	140	L	5870	88.9	32.2	16.5	8.2	3.9	6241	6597	7788	9925	130
22	1	4	147	R	3502	91.1	33.5	15.9	8.0	3.8	3634	3783	4822	6069	80
23	1	4	147	L	3502	87.1	34.9	17.8	8.4	3.9	3800	3631	4307	5780	78
24	i	4	154 154	R	7518	91.7	29.2	16.0	8.1	3.9	7749	9317	10287	12868	167
25	ź	1		Ľ	5767	90.8	38.1	15.4	7.8	3.7	6003	5477	8198	10251	135
26	ź	1	35 35	R	4429	76.2	28.0	16.2	10.0	6.2	5494	5724	5985	6141	62
27	ź	1	42	L	3708	89.4	28.8	17.3	10.0	5.9	3921	4659	4692	5141	54
28	2	1	42	R	6179	67.2	30.4	15.9	12.9	5.6	8691	7355	8508	6641	95
29	22	1	49	L	7106	78.5	34.5	16.3	9.6	5.8	8556	7453	9544	10263	106
30	5	i	49	R	7621	90.3	33.7	16.2	9.0	5.0	7977	8183	10299	11740	132
31	22		70	L R	5150	86.7	34.5	15.2	8.9	5.0	5615	5402	7417	8023	- 89
32	5	2	70	Ľ	7209 5767	76.5	37.0	18.9	8.5	3.5	8907	7050	8350	11759	179
33	5	5	77	R	5870	81.9	33.9	16.4	8.1	7.0	6656	6156	7698	9871	71
34	2 2 2	5	77	ĩ	5252	65.8 70.7	41.2	21.2	10.5	4.8	8432	5156	6062	7751	106
35	2	2222	84	R	5973	90.7	38.7	19.0	8.9	3.9	7022	4911	6051	8182	117
36	5	5	84	Ê	3708	73.6	36.5 25.2	17.2	8.5	3.7	6225	5922	7602	9743	140
37	2	23	105	R	7621	75.6	31.1	16.1	8.3	3.7	4762	5324	5042	6194	87
38	ž	ž	105	Ĺ	7518	77.4		14.3	6.1	2.9	9529	8867	11667	17322	228
39	2	3	112	R	5458	67.9	30.0 24.3	14.9	7.0	3.3	9181	9068	11046	14891	198
40	2	ž	112	î	7518	90.0		10.1	5.6	2.9	7598	8128	11830	13513	163
41	ž	3	119	Ŕ	5458	75.0	28.1 29.8	12.5	5.8	3.0	7896	9681	13167	17971	217
42	2	3	119	ĩ	7518	74.3		11.9	5.4	2.9	6879	6628	10041	14014	163
43	2222	4	140	R	4635	81.1	31.7 33.5	15.0	6.6	3.5 3.5 3.5 3.5	9564	8582	10972	15793	186
44	ž	4	140	Ĺ	5870	88.5	38.3	18.3	7.9	3.5	5402	5007	5545	8134	115
45	22	ĩ	147	R	5973	76.1	38.5 38.5	19.4	7.6	3.5	6270	5546	6624	10709	145
46	2	4	147	Ľ	7209			17.3	7.8	5.5	7419	5614	7559	10617	148
47	2 2	4	154	R		66.1 66.3	39.0 35.0	17.2	8.1	3.7	10309	6689	9176	12339	169
48	ž	ž	154	ĩ	5767	71.7	33.0	17.0	7.9	3.5	10572	7666	9549	13013	184
				•	5/0/	11-1	33.6	16.7	8.1	3.9	7603	6211	7560	9871	128

.

Table 19. Construction subgrade nondestructive testing.

Preceding page blank

Test	Measured Deflections, mils							Composite Modulus, psi									
No.	Lane	Se	c Sta	Of		.0	8.3	13.0	20.1	31.9	50.0		8.3	13.0	20.1	31.9	50.0
1	1	1	35	R	6799	41.8	39.4	19.2	8.1	3.7	2.1	15385	6237	7747	11623	15807	17663
3	1	i	35 42	L	6592	74.7	38.5	18.3	7.1	3.6	2.2	8339	6201	7866	12826	15826	16224
4	ł	i	42	RL	6592 6799	81.2	37.8	17.0	8.0	3.9	2.1	7675	6311	8485	11492	14560	17125
5	i	i	49	R	6799	73.3 82.5	34.0	15.8	6.8	3.6	2.1	8767	7241	9428	13840	16323	17663
6	i	i	49	Ê	6799	67.8	36.8 33.1	15.7	7.8	4.1	2.3	7792	6684	9452	12154	14439	16445
7	1	ż	70	Ř	6799	80.7	31.3	15.2 16.7	6.9	3.6	2.1	9474	7422	9820	13682	16323	17663
8	i	2	70	ĩ	6799	79.0	36.1	15.6	7.8	4.1	2.0	7959	7861	8896	12154	14439	18342
9	i	Ž	77	R	6592	84.1	34.6	17.8	7.6 7.7	4.1	1.7	8137	6815	9523	12342	14580	21677
10	1	ž	77	Ë	6799	73.2	35.4	16.7	8.2	4.3	2.2	7410	6901	8128	11905	13358	16513
11	1	2	84	R	7006	86.7	34.5	16.7	7.5	3.9	1.9	8776	6951	8938	11511	15017	20293
12	1	2	84	Ê	7212	83.5	30.7	13.5	7.2	4.0 8.8	2.1 6.9	7642	7342	9210	12985	15171	18201
13	1	3	105	R	6799	76.0	35.9	17.2	8.0	3.7	2.2	8168	8487	11692	13803	7111	5815
14	1	3	105	L	6799	83.3	31.8	15.9	7.2	3.4	1.9	8458 7718	6845 7744	8671	11853	15807	17342
15	1	3	112	R	6799	77.2	36.1	15.6	6.9	3.3	2.0	8324	6815	9335 9547	13156 13761	17261	19465
16	1	3	112	L	7006	63.4	35.0	16.7	7.3	4.1	1.9	10448	7252	9188	13336	17667 14879	19076
17	1	3	119	R	6799	87.7	32.3	16.1	6.7	3.6	2.0	7330	7621	9221	14002	16323	20911 18702
18	1	3	119	L	6799	68.8	28.3	19.5	7.0	3.4	1.9	9339	8691	7622	13376	17261	19465
19	1	4	140	R	7006	58.1	31.2	14.4	6.5	3.4	1.9	11388	8131	10615	14953	17787	20476
20	1	4	140	L	6799	56.2	28.5	15.6	7.2	3.4	2.0	11431	8631	9547	13013	17261	19076
21	1	4	147	R	7212	57.5	29.8	14.8	7.0	3.5	2.1	11860	8745	10637	14189	18101	19089
22 23	1	4	147	L	6799	53.0	28.2	15.2	6.7	3.3	1.8	12137	8716	9820	14002	18093	21195
24	i	4	154 154	R	8038	26.7	20.9	16.7	7.0	3.4	1.9	28506	13887	10517	15903	20644	23492
25	2	1	35	L	7006 8451	67.6	30.2	15.9	7.4	3.5	1.8	9791	8396	9619	13194	17387	21841
26	2	i	35	R	8658	51.5	27.8	17.5	9.6	5.7	3.5	15512	11002	10584	12147	12785	13321
27	2	i	42	R	9055	51.7 43.7	29.9	17.4	10.6	5.9	3.5	15844	10471	10892	11335	12834	13647
28	2	i	42	ĉ	8864	44.3	22.7 23.5	14.7	8.6	5.2	3.4	19603	14449	13463	14028	15267	14771
29	ž	i	49	R	8864	44.5	23.5	14.3	7.6	5.0	3.3	18917	13670	13541	16090	15416	14803
30	ž	i	49	ĩ	8658	74.4	23.2	13.7 14.1	7.8 8.0	4.6	3.0	19834	14867	14123	15765	16592	16580
31	ž	ż	70	R	8451	88.8	28.5	16.6	9.3	4.5	2.8	10993	13511	13411	15020	16629	16869
32	ž	Ž	70	Ë	8451	73.2	29.1	16.2	8.3	4.7 3.9	2.3 3.3	8998	10729	11162	12664	15555	20440
33	2	2	77	R	8451	55.6	32.0	20.3	10.2	4.9	2.3	10914 14370	10525 9566	11406	14105	18854	14114
34	2	2	77	L	8451	67.9	32.2	19.3	9.6	4.5	2.4	11762	9366	9107 9571	11491	15053	20440
35	2	2	84	R	8451	81.3	28.3	17.4	9.0	4.3	2.2	9830	10803	10632	12147 12996	16374	19435
36	2	2	84	L	8658	50.7	29.5	18.3	8.9	4.2	2.1	16152	10610	10376	13432	17283 18041	21170 22492
37	2	3	105	R	9055	80.1	24.3	14.3	7.5	3.7	1.9	10688	13489	13909	16695	21053	25924
38	2	3	105	L	8967	47.2	24.8	14.4	7.8	3.8	2.2	17956	13082	13586	15868	20418	22463
39	2	3	112	R	9261	63.7	24.8	15.7	8.3	4.0	2.2	13742	13533	12906	15530	20252	23621
40	2	3	112	L	9468	51.0	30.8	18.1	9.8	4.3	2.4	17540	11114		13391	19011	22137
41	2	3	119	R	8864	61.7	21.0	17.7	8.3	4.0	2.2	13581	15285		14865	19384	22205
42 43	2	3	119	L	8658	42.7	24.9	14.7	7.1	3.7	2.2	19176	12591				21689
45	2	4	140	R	8658	44.6	25.7	16.8	9.1	4.1	2.1	18331	12186	11301		18212	22492
44	2	4	140 147	L	8245	43.5	25.7	16.3	8.7	4.1	2.2	17898	11605			17344	21030
46	ź	4	147	R L	9055 8864	80.8	25.2	16.1	8.5	4.1	2.3	10589	13024			19231	21901
47	2	-	154	R		46.0	25.9	17.8	9.1	4.3	2.2	18205				17962	22205
48	2	4	154	K L	8451	40.9 40.2	23.0 22.0	15.9	8.8	4.1	2.2	20483				18825	22205
	-	-		-	07J I	-0.2	22.0	14.1	7.5	3.8	2.2	19892	13871	13090	15582	19243	21170

Table 20. Construction base nondestructive testing.

Table 21. Construction completed pavement nondestructive testing.

Test					Surf	Load,		Measured Deflections, mils			Composite Hodulus, psi							
No.	Lane	Sec	: Sta	Off	F	lb	.0	8.3	13.0	20.1	31.9	50.0	.0	8.3	13.0	20.1	31.9	50.0
1	1	1	35	R	96	8445	57.2	40.2	29.3	14.4	4.9	2.5	13955	7602	6310	8131	14987	18657
2	1	1	35	L	95	8651	51.6	35.7	25.4	12.2	4.5	2.5	15847	8769	7456	9831	16717	19112
3	1	1	42	R	91	8445	56.9	39.8	29.4	15.1	5.7	3.0	14029	7678	6288	7754	12883	15547
4	1	1	42	L	95	8651	48.8	34.1	24.3	12.1	4.8	2.7	16757	9180	7794	9913	15672	17696
5	1	1	49	R	93	8445	61.5	42.8	31.0	15.4	5.4	2.7	12980	7140	5964	7603	13599	17275
6	1	1	49	Ľ	95	8754	49.3	33.2	23.1	11.0	4.5	2.7	16784	9541	8296	11034	16916	17907
7	1	2	70	R	93	8651	49.3	34.7	25.4	13.2	5.2	2.5	16587	9021	7456	9087	14467	19112
8 9		2	70 77	L R	93 93	8651	51.8	35.7	25.3	12.6	4.8	2.3	15786	8769	7486	9519	15672	20774
10		ź	77	Ē	94	8445 8651	48.9 49.3	34.7 33.8	25.4 24.1	13.2 12.0	5.2	2.5 2.3	16324	8807	7279	8870	14122	18657
11	i	2	84	Ř	92	8651	50.8	34.7	24.1	12.0	4.8 5.0	2.5	16587 16097	9262 9021	7858 7606	9995 9595	15672 15045	20774
12	i	ž	84	ĩ	93	8651	47.9	32.2	22.4	11.0	4.4	2.4	17071	9722	8455	10904	17097	19112 19908
13	i	3	105	Ŕ	92	8651	57.0	39.0	27.6	13.6	5.1	2.4	14346	8027	6862	8819	14750	19908
14	i	3	105	ï	94	8651	52.0	34.7	23.9	11.3	4.4	2.4	15725	9021	7924	10614	17097	19908
15	i	3	112	Ř	91	8651	48.6	33.9	24.5	12.4	4.7	2.3	16826	9234	7730	9673	16006	20774
16	1	3	112	Ë	95	8651	48.5	32.4	22.6	11.1	4.2	2.2	16860	9662	8380	10806	17911	21718
17	1	3	119	R	92	8651	45.4	31.9	23.3	12.1	4.7	2.3	18012	9813	8128	9913	16006	20774
18	1	3	119	L	95	8651	45.7	30.9	21.5	10.8	4.3	2.2	17893	10131	8809	11106	17495	21718
19	1	4	140	R	91	8651	45.9	31.0	21.9	11.2	4.5	2.2	17815	10098	8648	10709	16717	21718
20	1	-4	140	L	95	8651	48.3	31.3	20.6	10.0	4.2	2.2	16930	10001	9194	11994	17911	21718
21	1	4	147	R	91	8651	45.2	29.2	19.8	9.8	4.4	2.2	18091	10721	9565	12239	17097	21718
22	1	- 4	147	L	94	8651	46.0	29.6	19.6	9.8	4.3	2.1	17777	10576	9663	12239	17495	22752
23	1	4	154	R	90	8651	47.3	27.3	23.0	11.7	4.6	2.2	17288	11467	8234	10251	16354	21718
24	1	4	154	L	93	8651	46.9	31.4	22.0	11.0	4.5	2.2	17435	9970	8609	10904	16717	21718
25 26	2		35	R	83	7827	16.4	11.7	9.4	6.1	3.5	2.3	45112	24207	18229	17790	19446	18795
20	2	1	35 42	L R	84 88	7621 8033	18.2 14.9	13.1	10.5	6.7	3.8 3.2	2.4	39580 50960	21051	15890	15770	17440	17538
28	2	-	42	Ľ	89	7930	17.5	10.4 12.4	8.2 9.8	5.3 6.2	3.2	2.2 2.4	42833	27950 23141	21446 17715	21014 17733	21829 19702	20166 18249
29	ž	5	49	Ŕ	88	8033	15.4	10.7	8.5	5.4	3.1	2.0	42033	27166	20689	20625	22533	22183
30	2	i	49	î	89	7621	18.4	13.2	10.5	6.5	3.4	2.0	39150	20892	15890	16256	19491	21045
31	2 2	ż	70	Ř	88	7827	17.5	12.6	9.9	6.2	3.1	1.6	42276	22478	17308	17503	21955	27018
32	2	ž	70	ï	86	7827	18.9	13.1	10.3	6.4	3.2	1.6	39145	21620	16636	16956	21269	27018
33	2	Ž	77	Ř	89	8033	17.2	12.7	10.2	6.7	3.5	1.8	44146	22888	17241	16623	19958	24648
34	2	2	77	L	89	8033	20.0	14.3	11.3	7.2	3.6	1.8	37965	20327	15563	15469	19404	24648
35	2	2	84	R	88	8033	16.5	11.8	9.3	5.9	3.0	1.5	46019	24634	18910	18877	23284	29578
36	2	2	84	L	90	7827	18.9	13.7	10.8	6.8	3.4	1.7	39145	20673	15866	15959	20018	25429
37	2	3	105	R	89	8239	14.1	9.7	7.7	5.0	2.7	1.5	55233	30736	23425	22846	26535	30336
38	2	3	105	L	90	7930	16.8	11.9	9.6	6.0	3.0	1.6	44617	24114	18084	18324	22986	27373
39	2	3	112	R	87	8239	14.3	10.0	8.0	5.1	2.8	1.5	54460	29814	22546	22398	25587	30336
40	2	3	112	L	89	7827	16.4	12.0	9.7	6.4	3.3	1.7	45112	23602	17665	16956	20625	25429
41	2	3	119	R	88	8239	15.2	10.6	8.4	5.4	2.9	1.5	51236	28126	21473	21154	24705	30336
42	2	3	119	L	90	7827	16.3	11.6	9.3	6.0	3.1	1.6	45389	24416	18425	18086	21955	27018
43 44	2	4	140 140	R	87 89	8239 8033	13.4 15.4	9.3 10.4	7.4	4.8 5.0	2.6 2.7	1.5 1.5	58118 49306	32058 27950	24374 21711	23798 22275	27555 25871	30336 29578
45	2	4	140	L R	86	8445	14.0	9.4	8.1 7.4	4.7	2.6	1.5	49308 57018	32510	24984	24912	25671	31094
45	2	4	147	Ľ		8033	15.5	10.6	8.3	5.3	2.8	1.5	48988	27423	21188	21014	24947	29578
47	ž	2	154	Ř	86	9887	17.5	11.9	9.4	6.1	3.3	1.8	53403	30065	23026	22472	26053	30337
48	2	4	154	Ê		8239	15.2	10.4	8.1	5.1	2.8	1.6	51236	28667	22268	22398	25587	28440
	-	-	•	_														

APPENDIX B. ENVIRONMENTAL AND REFERENCE LOCATION NDT

Table 22. Phase 1 environmental history.

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 %	Subgrade Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
8/30/86	41	73	.00	.00	-	-	17.1	22.3
8/31/86	44	76	.00	.00				LL.J
9/ 1/86	54	74	.16	.00				
9/ 2/86	59	71	.50	.00				
9/ 3/86	65	73	.13	.00				
9/ 4/86	64	77	.00	.00				
9/ 5/86	68	74	.00	.00				
9/ 6/86	57	81	.00	.00				
9/ 7/86	50	76	.00	.00				
9/ 8/86	47	69	.14	.00				
9/ 9/86	40	75	.00	.00				
9/10/86	47	75	.00	.00				
9/11/86	65	83	.00 .00	.00 .00				
9/12/86	63 53	85 77	.00	.00				
9/13/86 9/14/86	48	77	.00	.00				
9/15/86	55	81	.00	.00				
9/16/86	46	70	.00	.00				
9/17/86	35	68	.00	.00				
9/18/86	39	73	.00	.00				
9/19/86	61	81	.01	.00				
9/20/86	59	82	.00	.00				
9/21/86	58	84	.00	.00				
9/22/86	63	75	.00	.00				
9/23/86	65	88	.00	.00				
9/24/86	67	85	-00	.00				
9/25/86	65	90	.05	.00 .00				
9/26/86	62	92 86	.00 .00	.00				
9/27/86 9/28/86	65 63	70	.05	.00				
9/29/86	68	85	.00	.00				
9/30/86	68	92	.00	.00				
10/ 1/86	66	90	.04	.00				
10/ 2/86	62	89	.00	.00				
10/ 3/86	58	85	.00	.00				
10/ 4/86	69	85	.02	.00				
10/ 5/86	58	79	.00	.00				
10/ 6/86	42	64	.00	.00				
10/ 7/86	32	64	.00	.00				
10/ 8/86	37	78	.00	.00				
10/ 9/86	53	80 59	.00	.00 .00				
10/10/86	37 33	65	.00 .00	.00				
10/11/86 10/12/86	33 39	67	.00	.00				
10/13/86	59	67	.36	.00				
10/14/86	49	76	. 19	.00				
10/15/86	35	60	.00	.00				
10/16/86	30	63	.00	.00				
10/17/86	38	59	.00	.00				
10/18/86	32	59	.00	.00				
10/19/86	27	62	.00	.00				
10/20/86	27	65	.00	.00				
10/21/86	28	72	.00	.00				
10/22/86	40	77	.00	.00				
10/23/86	42 47	78 72	.00 .00	.00 .00				
10/24/86	50	57	.10	.00				
10/25/86 10/26/86	52	57	.42	.00				
10/27/86	55	71	.17	.00				
10/28/86	41	69	100	.00				
10/29/86	35	68	.00	.00				

Preceding page blank

. А

Table 22. Phase 1 environmental	history	(continued).
---------------------------------	---------	--------------

Date	Nin. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 %		Modulus Lane 2
10/70/0/	••••••••	••••••				•••••••	••••••••••	ks i
10/30/86	46	67	.00	.00				
10/31/86 11/ 1/86	55	71	.00	.00				
11/ 2/86	41 35	69	.04	.00				
11/ 3/86	46	68 67	.44 .00	.00				
11/ 4/86	36	58	.04	.00 .00				
11/ 5/86	34	58	.92	.00				
11/ 6/86	47	71	.00	.00				
11/ 7/86	33	57	.28	.00				
11/ 8/86	42	57	.01	.00				
11/ 9/86	38	49	.00	.00				
11/10/86 11/11/86	39	59	.00	.00				
11/12/86	41 49	51 67	.66	.00				
11/13/86	51	74	.00 .00	.00 .00				
11/14/86	32	53	.00	.00				
11/15/86	33	44	.00	.00				
11/16/86	37	53	.00	.00				
11/17/86	23	44	.00	.00				
11/18/86	13	38	.33	.00				
11/19/86	19	45	.00	.00				
11/20/86 11/21/86	38	53	.68	.00				
11/22/86	28 31	60	.00	.00				
11/23/86	23	59 52	.00 .01	.00				
11/24/86	22	36	.03	.00 .00				
11/25/86	32	48	.00	.00				
11/26/86	29	52	.73	.00				
11/27/86	25	54	.00	.00				
11/28/86	38	53	.00	.00				
11/29/86	26	52	.00	.00				
11/30/86	40	51	.00	.00				
12/ 1/86 12/ 2/86	35 29	57 52	.00	.00				
12/ 3/86	28	58	1.42 .02	.00				
12/ 4/86	27	50	.02	.00 .00	17.3	18.6		
12/ 5/86	30	39	.00	.00				
12/ 6/86	37	53	.00	.00				
12/ 7/86	40	61	.00	.00				
12/ 8/86	29	49	.02	.00				
12/ 9/86	21	40	.32	.00				
12/10/86 12/11/86	17	45	.01	.00	17.4	18.6		
12/12/86	22 41	52	.51	.00				
12/13/86	44	54 55	.00 .00	.00				
12/14/86	41	57	.00	.00 .00				
12/15/86	33	41	.00	-00				
12/16/86	34	40	.00	-00				
12/17/86	15	36	.00	.00				
12/18/86	13	39	.52	.00				
12/19/86	19	54	-00	.00				
12/20/86	23	53	.00	.00				
12/21/86 12/22/86	30	51	.00	.00				
12/23/86	38 33	47 47	.00	.00				
12/24/86	25	41	.00 2.01	.00 .00				
12/25/86	21	41	.00	.00				
12/26/86	15	43	.00	.00				
12/27/86	16	45	.00	.00				
12/28/86	31	46	.00	.00				
12/29/86	37	53	.00	.00				
12/30/86	31	44	.00	.00				
12/31/86	24	42	.00	.00				

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 X	Subgrade Modulus Lane 1 Ksi	Subgrade Modulus Lane 2 ksi
1/ 1/87 1/ 2/87	21 17	40 42	.29 .24	2.10 3.00			•••••••	
1/ 3/87	23	39	.00	.00				
1/ 4/87 1/ 5/87	25 22	45	.00	.00				
1/ 6/87	17	39 46	.00 .00	.00 .00				
1/ 7/87	36	55	.00	.00				
1/ 8/87 1/ 9/87	29 28	43 45	.00	.00				
1/10/87	33	42	.00 .06	.00 .00				
1/11/87	30	43	.00	.00				
1/12/87 1/13/87	28 27	45 49	.00 "00	.00 .00				
1/14/87	24	66	.00	.00				
1/15/87 1/16/87	45 37	60 50	.14	.00				
1/17/87	27	38	.00 .00	.00 .00				
1/18/87	31	34	.38	.00				
1/19/87 1/20/87	33 34	42 42	1.36 .00	.00 .00				
1/21/87	31	40	.00	.00				
1/22/87 1/23/87	26 5	32 31	1.18 .00	11.10				
1/24/87	-2	25	.00	.00 .00				
1/25/87	•5	18	.24	4.10				
1/26/87 1/27/87	3 -9	26 24	.30 .00	6.10 .00				
1/28/87	-17	35	.00	.00				
1/29/87 1/30/87	- 1 28	41 44	.24 .10	1.50				
1/31/87	29	40	.00	.90 .00				
2/ 1/87 2/ 2/87	18	40	.00	.00				
2/ 3/87	27 20	58 50	.00. .00	.00 .00				
2/ 4/87	34	45	.00	.00				
2/ 5/87 2/ 6/87	25 18	43 52	.00 .00	.00	•/ •			
2/ 7/87	23	51	.00	.00 .00	14.1	19.3		
2/ 8/87 2/ 9/87	24 23	53	.02	.00				
2/10/87	20	33 48	.00 .00	.00 .00				
2/11/87	20	47	.00	.00				
2/12/87 2/13/87	25 28	43 44	.12 .00	.00	16.4	17.8		13.5
2/14/87	19	39	.00	.00. .00				
2/15/87 2/16/87	14	29	.00	.00				
2/17/87	11 28	28 37	.00 .00	.00 .00				
2/18/87	20	44	.00	.00	16.8	18.8		
2/19/87 2/20/87	14 15	45 45	.00 .00	.00				
2/21/87	23	48	.00	.00 .00				
2/22/87	19	48	.38	3.10				
2/23/87 2/24/87	32 28	46 45	1.34 .00	8.90 .00				
2/25/87	16	43	.00	.00	16.8	18.6		
2/26/87 2/27/87	16 28	42 41	.00	.00				
2/28/87	31	44	.00 .61	.00 .00				
3/ 1/87	43	69	.28	.00				
3/ 2/87 3/ 3/87	37 31	53 55	.00 .00	.00 .00	16.7	18.2		
3/ 4/87	23	37	.00	.00				

-

Table 22. Phase 1 environmental history (continued).

Table	22.	Phase	1	environmental	history	(continued).
-------	-----	-------	---	---------------	---------	--------------

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 %	Subgrade Subgrade Modulus Modulus Lane 1 Lane 2 ksi ksi
3/ 5/87	16	43	.00	.00			
3/ 6/87	21	60	.00	.00			
3/`7/87 3/ 8/87	31 30	75	.00	.00			
3/ 9/87	28	76 66	.00 .03	.00 .00			
3/10/87	19	34	.01	.00			
3/11/87	19	40	.00	.00			
3/12/87 3/13/87	22	47	.00	.00			
3/14/87	25 19	46 48	.00. .00	.00 .00	17.8	18.0	13.7
3/15/87	32	42	.19	.50			
3/16/87	25	47	.09	.90			
3/17/87 3/18/87	22 23	54 58	.00 .00	.00 .00			
3/19/87	28	56	.00	.00			
3/20/87	24	61	-00	.00	17.6	17.7	
3/21/87 3/22/87	35 31	53 57	.00	.00			
3/23/87	25	63	.00 .00	.00 .00			
3/24/87	28	68	.00	.00			
3/25/87	34	64	.07	.00			
3/26/87 3/27/87	47 37	71 70	.00 .00	.00 .00			
3/28/87	43	65	.35	.00			
3/29/87	42	73	.00	.00			
3/30/87 3/31/87	53 31	60	.23	.00			
4/ 1/87	20	63 50	.21 .00	.00 .00	18.2	19.1	
4/ 2/87	33	63	.10	.00	10.6	17.1	
4/ 3/87 4/ 4/87	32 36	46	.51	.00			
4/ 5/87	32	56 42	1.47	.00 .00			
4/ 6/87	32	45	.31	.50			
4/ 7/87 4/ 8/87	43 39	57	.00	.00			
4/ 9/87	33	63 61	.00 .00	.00 .00	17.9	18.2	
4/10/87	39	71	.00	.00			
4/11/87	41	75	.01	.00			
4/12/87 4/10/87	39 39	67 71	.01 .00	.00 .00			
4/14/87	37	67	_00	.00			
4/15/87	46	53	.16	.00			
4/16/87 4/17/87	45 49	50 64	.79	.00	17.1	18.5	
4/18/87	54	65	.37 .00	.00			
4/19/87	53	71	.00	.00			
4/20/87 4/21/87	54 56	75	.00	.00			
4/22/87	50	78 86	.00 .00	-00 -00			
4/23/87	51	61	.00	.00			
4/24/87	50	59	.69	.00			
4/25/87 4/26/87	39 36	52 65	-08	.00	-		
4/27/87	31	66	.00 .00	.00 .00			
4/28/87	37	59	-00	.00			
4/29/87 4/30/87	32	77	.00	.00			
5/ 1/87	48 36	67 72	.00 .00	.00 .00	18.4	18.4	
5/ 2/87	46	71	.01	.00			
5/ 3/87 5/ 4/87	51	78	.39	.00			
5/ 5/87	42 34	53 65	.72 .00	.00 .00			
5/ 6/87	37	75	.00	-00			
				•			

Table 22.	Phase (l environmental	history	(continued).
-----------	---------	-----------------	---------	--------------

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 %	Subgrade Subgrade Modulus Modulus Lane 1 Lane 2 ksi ksi
5/ 7/87	41	80	.00	.00	17.4	18.2	
5/ 8/87	43	70	.01	.00			
5/ 9/87 5/10/87	37 44	79	.00	.00			
5/11/87	50	87 89	.00 .00	00. 00.			
5/12/87	62	88	.21	.00			
5/13/87	54	67	.00	.00			
5/14/87	53	69	.00	.00	17.5	19.5	
5/15/87 5/16/87	53 45	80 73	.36 .00	.00 .00			
5/17/87	47	87	.00	.00			
5/18/87	53	91	.00	.00			10.8
5/19/87 5/20/87	52 49	67 57	.10	.00			
5/21/87	53	71	.39 .03	.00 .00	16.4	17.7	
5/22/87	53	79	.00	.00	.014		
5/23/87	65	85	.00	.00			
5/24/87 5/25/87	64 60	85 69	.02 .03	.00			
5/26/87	58	68	.03	.00 .00			
5/27/87	60	73	.00	.00			
5/28/87	62	84	.00	.00	17.2	18.3	
5/29/87 5/30/87	60 64	92 95	.00 .00	.00			
5/31/87	67	89	.00	.00 .00			
6/ 1/87	64	90	.04	.00			
6/2/87	62 65	87	.00	.00			
6/ 3/87 6/ 4/87	60	86 76	.17 .56	.00 .00	17.3	19 5	
6/ 5/87	53	79	.00	.00	17.3	18.5	
6/ 6/87	54	80	.00	.00			
· 6/ 7/87 6/ 8/87	53 62	89 93	.00	.00			
6/ 9/87	62	83	.00 .00	.00 .00			
6/10/87	50	76	.00	.00			
6/11/87	45	80	.00	.00			
6/12/87 6/13/87	65 64	80 89	.09 .29	.00 .00			
6/14/87	62	91	.00	.00			
6/15/87	70	94	.00	.00			
6/16/87 6/17/87	65	83	.00	.00			
6/18/87	60 61	87 87	.00 .00	.00 .00			
6/19/87	63	91	.00	.00			
6/20/87	69	93	.93	.00			1
6/21/87 6/22/87	69 68	87 91	.23	.00			
6/23/87	72	86	.29 .00	.00 .00	17.2	18.2	
6/24/87	63	84	.00	.00		10.2	
6/25/87	57	89	.00	.00			
6/26/87 6/27/87	66 63	82 85	.77 .01	.00 .00			
6/28/87	51	81	.00	.00			
6/29/87	53	88	.00	.00			
6/30/87 7/ 1/87	68	93	.00	.00			
7/ 2/87	65 71	92 88	.00 .00	.00 .00			
7/ 3/87	70	90	.00	.00			
7/ 4/87	72	86	.00	.00			
7/ 5/87 7/ 6/87	68 68	86 83	.00	.00			
7/ 7/87	73	83 92	.40 .00	.00 .00			
7/ 8/87	71	96	.00	.00			

Table 22.	Phase 1	environmental	history	(continued).
-----------	---------	---------------	---------	--------------

Date	Hin. Temp. F	Hex. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Moist. Lane 2 X	Subgrade Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
7/ 9/87	74	93	.00	.00		•••••••		•••••
7/10/87	74	92	.00	.00				
7/11/87 7/12/87	70 68	94 94	.00 .00	.00				
7/13/87	66	92	.00	.00 .00				
7/14/87	63	86	.00	.00				
7/15/87	53	78	.20	.00				
7/16/87 7/17/87	60 57	80 85	.00 .00	.00 .00				
7/18/87	63	91 91	.00	.00				
7/19/87	65	92	.00	.00				
7/20/87 7/21/87	67 77	95 98	.00 .00	.00				
7/22/87	71	96	.00	.00 .00	16.8	18.5		
7/23/87	70	96	.00	.00	.0.0	10.5		
7/24/87 7/25/87	74 72	97 97	.00	.00				
7/26/87	70	93	.00 .00	.00 .00				
7/27/87	68	92	.00	.00				
7/28/87 7/29/87	63	88	.00	.00				
7/30/87	58 62	88 93	.00 .00	.00 .00				
7/31/87	67	93	.00	.00				17.3
8/ 1/87	69	87	.00	.00				
8/ 2/87 8/ 3/87	70 74	90 97	.00 .00	.00 .00				
8/ 4/87	71	97	.00	.00	16.6	18.1		
8/ 5/87	70	89	.00	.00				
8/ 6/87 8/ 7/87	69 65	87 86	.10 .00	.00. .00				
8/ 8/87	70	93	.00	.00				
8/ 9/87	73	95	.00	.00				
8/10/87 8/11/87	67 58	93 87	.00 .00	.00 .00				
8/12/87	56	87	.00	.00				
8/13/87	60	86	.00	.00				
8/14/87 8/15/87	57 63	87 90	.00 .00	.00	17.7	18.3		
8/16/87	70	89	.00	.00 .00				
8/17/87	70	98	.00	.00				
8/18/87 8/19/87	68 66	95 86	.00 .00	.00				
8/20/87	59	89	.00	.00 .00				
8/21/87	52	90	.00	.00	18.0	18.4		
8/22/&7 8/23/87	71 58	77 81	.20 .00	.00				
8/24/87	46	80	.00	.00 .00				
8/25/87	49	74	.00	.00				
8/26/87 8/27/87	61 63	78 100	.00 .00	.00 .00				
8/28/87	70	83	.20	.00	16.4	18.5	14.5	17.3
8/29/87	55	82	.00	.00				
8/30/87 8/31/87	49 60	81 82	.00 .10	.00				
9/ 1/87	51	81	.00	.00 .00				
9/ 2/87	45	85	.00	.00				
9/ 3/87 9/ 4/87	55 5 3	80 80	.00 .00	.00	17.4	18.4		
9/ 5/87	54	72	.00	.00 .00				
9/ 6/87	63	71	.00	.00				
9/ 7/87 9/ 8/87	67 69	81 74	.00 1.30	-00				
9/ 9/87	66	86	2.20	.00 .00				

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Moist. Lane 2 %	Subgrade Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
9/10/87	67	85	.00	.00	15.8	18.5		
9/11/87 9/12/87	64 67	85 83	.00 .00	.00 .00				
9/13/87	66	83	.00	.00				
9/14/87 9/15/87	63 58	86 86	4.00 .00	.00 .00				
9/16/87	61	86	.00	.00				
9/17/87	66	87	.00	.00	16,3	17.1		
9/18/87 9/19/87	66 61	85 71	.80 .00	.00 .0C				
9/20/87	61	65	.00	.00				
9/21/87 9/22/87	59 55	78 77	.40	.00 .00				
9/23/87	51	74	.00	.00	17.3	18.4		
9/24/87 9/25/87	51 47	77 69	.00 .00	.00. .00				
9/26/87	41	75	.00	.00				
9/27/87 9/28/87	51 51	81 83	.00 .00	.00 .00				
9/29/87	56	81	.00	.00				
9/30/87	55	75	.20	.00				13.4
10/ 1/87 10/ 2/87	43 40	65 73	.00 .00	.00 .00				
10/ 3/87	44	62	.00	.00				
10/ 4/87 10/ 5/87	40 35	59 69	.00 .70	.00 .00	16.9	18.8		
10/ 6/87	41	71	.00	.00	10.9	10.0		
10/ 7/87 10/ 8/87	41 34	64 58	.00 .00	.00				
10/ 9/87	29	63	.00	.00 .00	16.8	18.4		
10/10/87	47	75	.00	.00				
10/11/87 10/12/87	47 33	61 55	.00	.00 .00				
10/13/87	30	58	.00	.00				
10/14/87 10/15/87	29 28	62 67	.00. .00	.00 .00				
10/16/87	32	75	.00	.00	16.5	18.1		
10/17/87 10/18/87	35 37	70 68	.00 .00	.00 .00				
10/19/87	37	72	.00	.00				
10/20/87 10/21/87	46 36	73 59	.00	.00				
10/22/87	33	57	.10 .00	.00 .00				
10/23/87	33	68 72	.00	.00				
10/24/87 10/25/87	36 30	72 58	.00 .00	.00 .00				
10/26/87	26	60	.00	.00				
10/27/87 10/28/87	29 30	49 58	.00 1.40	.00 .00				
10/29/87	27	57	.00	.00			8.8	13.9
10/30/87 10/31/87	30 39	66 69	.00 .00	.00 .00				
11/ 1/87	36	71	.00	.00				
11/ 2/87	39 / 1	70	.00	.00	16.8	18.6		
11/ 3/87 11/ 4/87	41 47	75 80	.00 .00	.00 .00				
11/ 5/87	45	67	.00	.00	/ - -			
11/ 6/87 11/ 7/87	27 28	51 63	.00 .00	.00 .00	17.2	19.3		
11/ 8/87	42	77	.00	.00				
11/ 9/87 11/10/87	56 31	70 57	.00 .50	.00 .00				
11/11/87	29	34	.50	6.00				

Table 22. Phase 1 environmental history (continued).

Table 22. Phase 1 environmental history (continued).

.

-===

	Min.	Max.			Avg. Moist	Avg. Moist.	Subgrade Modulus	Subgrade Modulus
	Temp.	Temp.	Rain	Snow	Lane 1	Lane 2	Lane 1	Lane 2
Date	F	F 	in.	in.	*	×.	ksi	ksi
11/12/87	27	49	.00	2.00	•/ •	40.7		
11/13/87 11/14/87	26 28	59 68	.00. .00	.00 .00	16.1	18.7		
11/15/87	32	62	.00	.00				
11/16/87 11/17/87	32 53	68 71	.00 .38	.00				
11/18/87	47	68	.00	.00				
11/19/87	34	54	.00	.00	16.3	18.8		
11/20/87 11/21/87	29 24	50 30	.00 .00	.00 .00				
11/22/87	21	41	.00	.00				
11/23/87 11/24/87	20 46	57 63	.00 .00	.00 .00				
11/25/87	39	66	.00	.00	16.0	19.6		
11/26/87	46 38	71 46	.00 .00	.00 .00				
11/27/87 11/28/87	39	45	.00	.00				
11/29/87	44	54	.00	.00				17 0
11/30/87 12/ 1/87	38 28	49 50	2.25 .00	.00 .00				13.8
12/ 2/87	33	45	.00	.00				
12/ 3/87 12/ 4/87	26 26	44 58	.00 .15	.00 .00	15.9	18.3		
12/ 5/87	41	71	.00	-00	12.7	10.2		
12/ 6/87	37	50	.00	.00				
12/ 7/87 12/ 8/87	25 24	48 50	.08 .00	.00 .00			,	
12/ 9/87	30	64	.00	.00	45.0			
12/10/87 12/11/87	40 40	54 54	.00 .37	.00 .00	15.9	18.1		
12/12/87	33	58	.00	.00				
12/13/87 12/14/87	28 32	48 45	.00 .00	.00 .00				
12/15/87	36	42	.72	.00				
12/16/87	35 34	41 40	.00 .00	.00 .00				
12/17/87 12/18/87	28	40	.00	.00	16.0	17.8		
12/19/87	30	45	.00	-00				
12/20/87 12/21/87	39 46	6 3 54	.0C .30	.00 .00				
12/22/87	26	46	.00	.00				
12/23/87 12/24/87	26 32	54 58	.06 .00	.00 .00				
12/25/87	46	65	.00	.00				
12/26/87	35 29	56 42	.00 .00	.00 .00				
12/27/87 12/28/87	34	36	.48	.00				
12/29/87	32	36	-44	.00				
12/30/87 12/31/87	18 20	38 46	.04	.00 .00				
1/ 1/88	35	52	.00	.00				
1/ 2/88 1/ 3/88	16 14	35 32	.00 .00	.00 .00				
1/ 4/88	19	40	.28	.00				
1/ 5/88	12	21	.00	.00				
1/ 6/88 1/ 7/88	9 10	26 25	.00 .00	.00 .00	17.0	18.5		
1/ 8/88	17	33	.00	.00				
1/ 9/88 1/10/88	15 6	38 42	.00 .00	.00 .00				
1/11/88	3	35	.00	.00				
1/12/88	8 24	38 45	.00	.00 .00			8.6	5 11.8
1/13/88	24	43	.00	.00			0.0	/ 11.0

Date			Rain in.	Snow in.	Moist. Lane 1 X	Moist. Lane 2	Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
1/14/88 1/15/88 1/15/88 1/17/88 1/20/88 1/20/88 1/22/88 1/22/88 1/22/88 1/23/88 1/24/88 1/25/88 1/26/88 1/27/88 1/29/88 1/29/88 1/29/88 2/ 3/88 2/ 3/88 2/ 3/88 2/ 3/88 2/ 4/88 2/ 5/88 2/ 1/88 2/ 1/88 2/ 1/88 2/ 1/88 2/ 1/88 2/ 1/88 2/ 11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/11/88 2/12/88 2/11/88 2/12/88 2/11/88 2/12/88 2/11/88 2/11/88 2/12/88 2/11/88 2/12/88 2/12/88 2/13/88 2/13/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88 2/22/88	9 10 8	28 34 47	.00 .00 .00 .00	.00. .00. .00	16.3	18.0		
1/17/88 1/18/88 1/19/88	26 35 32	50 52 48	.00 .22 .00	.00 .00 .00				
1/20/88	36 38	40 50	1.13	.00			13.2	14.5
1/22/88	35 22	37 42	.00	.00	16.9	18.3		
1/24/88 1/25/88	22 33	52 38	.00	.00				
1/26/88 1/27/88	18 14	33 35	.00. 00.	.00 .00				
1/28/88 1/29/88	14 16	38 37	.00 .00	.00 .00 .00	16.0	17.9	10.0	15.1
1/30/88 1/31/88	19 37	52 6 3	.00 .00	.00 .00				
2/ 1/88 2/ 2/88	55 36	71 62	.00 .00	.00 .00				
2/ 3/88 2/ 4/88	30 34	36 44	.55 .27	.00 .00 .00 .00	16.7	18.0	8.6	11.8
2/ 5/88 2/ 6/88	24 10	44 30	.00 .00	.00 .00				
2/ 7/88 2/ 8/88	25 20	34 44	.00	.00 .00 .00				
2/ 9/88	25	40 52	.00	.00 .00 .00 .00 .00	44.0	40 F		
2/11/88	28 36	44 40 77	.00	.00	10.0	18.2	11.0	11.8
2/13/00	20	49 52	.00	.00 .00				
2/16/88	36	48 58	.30	.00				
2/18/88	30 36	60 48	.00	.00	16.5	18.2		
2/20/88	38 44	58 62	.00	.00 .00				
2/22/88	20 46	52 66	.00	.00			12.8	12.5
2/24/88 2/25/88	32 24	42 40	.38	.00				
2/26/88 2/27/88	22 33	45 47	.00 .00	.00 .00 .00	16.8	18.5		
2/28/88 2/29/88	33 25	50 56	.00 .03	.00 .00				
3/ 1/88 3/ 2/88	25 24	52 64	.00	.00 .00				
3/ 3/88 3/ 4/88	46 43	62 56	.00 .00	.00 .00	16.4	18.1		
3/ 5/88 3/ 6/88	30 31	52 61	.00. .00	.00 .00				(5 (
3/ 7/88 3/ 8/88	31 30 78	65 63	.00 .84	.00			11.4	12.6
3/ 9/88 3/10/88 3/11/88	38 43 28	66 58	.00	.00 .00	16.5	17.9)	
3/12/88 3/13/88	28 52 38	68 77 70	.08 .00 .00	.00 .00 .00				
3/14/88 3/15/88	30 31 26	70 72 35	.08 .00	.00 .00				
3/16/88	26	51	.00	.00				

.

.

Table 22. Phase 1 environmental history (continued).

Date	Min. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Moist.	Lane 1	Modulus
3/17/88	34	72	.00	.00	14.9	18.5		
3/18/88	31	48	.00	.00				
3/19/88 3/20/88	36 38	56 58	.00 .00	.00 .00				
3/21/88	28	50	.25	.25				
3/22/88 3/23/88	21 33	54 65	.00 .00	.00 .00				
3/24/88	52	82	.00	.00				
3/25/88	54	83	.00	.00	15.5	17.5		
3/26/88 3/27/88	52 50	59 61	.00 1.75	.00 .00				
3/28/88	31	66	.00	.00			9.2	13.6
3/29/88 3/30/88	37 42	78 78	.00 .00	.00 .00				
3/31/88	53	73	.00	.00	15.0	18.1	8.8	10.8
4/ 1/88	52	80	.03 .00	.00				
4/ 2/88 4/ 3/88	55 5 3	80 79	.00	.00 .00				
4/ 4/88	60	81	.02	.00			7.2	10.6
4/ 5/88 4/ 6/88	58 53	85 84	.00 .00	.00 .00				
4/ 7/88	47	48	.44	.00	17.7	18.8		
4/8/88 4/9/88	46 40	50 65	.92 .00	.00 .00				
4/10/88	35	62	.00	.00				
4/11/88	46	72	.00	.00				
4/12/88 4/13/88	44 34	48 64	.00	.00 .00				
4/14/88	33	62	.00	.00	15.7	19.1		
4/15/88 4/16/88	36 33	73 54	.00 .00	.00 .00				
4/17/88	36	68	.00	.00				
4/18/88 4/19/88	54 35	63 56	.00 .15	.00 .00				
4/20/88	33	68	.00	.00				
4/21/88	46	68	.00	.00				
4/22/88 4/23/88	46 42	70 65	.00 .00	.00 .00				
4/24/88	45	59	.00	.00				
4/25/88 4/26/88	38 38	72 75	.00 .00	.00 .00				
4/27/88	46	76	.00	.00				
4/28/88 4/29/88	40 42	61 64	.46 .00	.00 .00	16.5	18.3		
4/29/88	42	71	.00	.00				
5/ 1/88	40	79	-00	.00				
5/2/88 5/3/88	44 44	66 63	.00 .07	.00 .00				
5/ 4/88	48	62	.00	.00				
5/ 5/88 5/ 6/88	52 55	63 88	.83 .94	.00 .00	16.2	17.5		
5/ 7/88	48	80	.00	.00				
5/ 8/88	50	81	.00	.00				
5/ 9/88 5/10/88	58 58	80 84	.00 .25	.00 .00				
5/11/88	56	81	.26	.00				
5/12/88 5/13/88	57 65	83 88	.00 .00	.00 .00	15.8	18.4		
5/14/88	58	89	.00	.00				
5/15/88 5/16/88	60 56	84 86	.00 .00	.00 .00				
5/17/88	61	82	1.20	.00				
5/18/88	59	72	.75	.00				

Table 22. Phase 1 environmental history (continued).

.

.

Date	Hin. Temp. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 %	Avg. Hoist. Lane 2 %	Subgrade Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
5/19/88	59	76	1.13	.00	17.0	18.8	*******	•••••
5/20/88 5/21/88	60 61	89 88	.04	.00				
5/22/88	53	82	.17 .00	.00 .00				
5/23/88	64	93	.00	.00				
5/24/88 5/25/88	61 54	91 66	.85 .25	.00				
5/26/88	52	78	.08	.00 .00	14.7	18.8		
5/27/88 5/28/88	43	78	.00	.00				
5/29/88	48 51	83 86	.00 .00	.00 .00				
5/30/88	55	89	.00	.00				
5/31/88 6/ 1/88	61 63	98 97	.00	.00				
6/ 2/88	57	70	.13 .03	.00 .00	17.1	18.9	8.5	11.6
6/ 3/88	52	92	.00	.00		10.7	0.5	11.0
6/ 4/88 6/ 5/88	49 45	78 89	.00 .00	.00 .00				
6/ 6/88	65	94	.00	.00				
6/ 7/88 6/ 8/88	72 65	100	.00	.00				
6/ 9/88	55	90 58	.00 .04	.00 .00	17.0	10 0		
6/10/88	55	78	.30	.00	17.0	19.0		
6/11/88 6/12/88	48 52	86 88	.00	.00				
6/13/88	60	99	.00 .00	.00. .00				
6/14/88	60	100	.00	.00				
6/15/88 6/16/88	63 70	101 96	.00 .20	.00				
6/17/88	70	87	.00	.00 .00	17.6	19.4		
6/18/88	68 70	97	.00	.00				
· 6/19/88 6/20/88	70 65	98 102	.00 .00	.00 .00				
6/21/88	70	106	.00	.00				
6/22/88 6/23/88	70 72	107	.00	.00				
6/24/88	74	102 106	.00 .00	.00 .00	15.3	18.3		
6/25/88	63	91	.00	.00				
6/26/88 6/27/88	73 66	102 88	.00	.00				
6/28/88	64	89	.00 .00	.00 .00				
6/29/88	58	86	.00	.00				
6/30/88 7/ 1/88	55 58	81 84	.00 .00	.00	16.7	20.1		
7/ 2/88	50	92	.00	.00 .00				
7/3/88	58	88	.00	.00				
7/ 4/88 7/ 5/88	64 63	101 96	.00 .00	.00 .00				
7/ 6/88	64	102	.00	.00				
7/ 7/88 7/ [·] 8/88	72 72	104	.00	.00	16.6	18.6		12.2
7/ 9/88	73	103 104	.00 .00	.00 .00				
7/10/88	70	106	.00	.00				
7/11/88 7/12/88	70 71	102	.07	.00				
7/13/88	70	86 96	.00 .05	.00 .00				
7/14/88	70	102	.00	.00	17.5	18.6		
7/15/88 7/16/88	78 72	105 102	.00	.00				
7/17/88	80	102	.00 .07	.00 .00				
7/18/88	74	100	.86	.00				
7/19/88 7/20/88	72 74	100 96	.08 .48	.00		•		
, , ww		70	.+0	.00				

89

.

· .

Table 22.	Phase 1	environmental	history	(continued).
-----------	---------	---------------	---------	--------------

	Min. Temp.	Max. Temp.	Rain	Snow	Avg. Moist. Lane 1	Avg. Moist. Lane 2	Subgrade S Modulus I Lane 1	ubgrade Modulus Lane 2
Date	F	F	in.	in.	*	*	ksi	ksi
7/21/88	73	92	.00	.00	16.6	17.9		
7/22/88	69	98	.00	.00				
7/23/88	72	82	.00	.00				
7/24/88 7/25/88	68 65	99 92	.0C .84	.00 .00				
7/26/88	73	92	.00	.00				
7/27/88	68	88	1.17	.00		40 F		
7/28/88 7/29/88	70 69	93 103	.00 .00	.00. .00	15.1	18.5		
7/30/88	72	104	.00	.00				
7/31/88	72	102	.00	.00				
8/ 1/88	72 72	102 102	.00 .00	.00 .00			9.0	
8/ 2/88 8/ 3/88	73	98	.00	.00				
8/ 4/88	72	96	.00	.00	16.3	18.4		
8/ 5/88	74 72	100 100	.00 .18	.00 .00				
8/ 6/8ű 8/ 7/88	73	101	.00	.00				
8/ 8/88	68 '	100	.00	.00				
8/ 9/88	<u>68</u>	100	.00	.00				
8/10/88 8/11/88	73 70	102 97	.00 .00	.00 .00	17.2	20.1		
8/12/88	76	108	.00	.00				
8/13/88	77	108	.00	.00				
8/14/88	79 76	109 108	.00 .50	.00 .00				
8/15/88 8/16/88	67	100	.00	.00				
8/17/88	67	106	.07	.00				
8/18/88	73 64	95 80	.12 .00	.00 .00	16.6			
8/19/88 8/20/88	68	71	.00	.00				
8/21/88	69	90	1.00	.00				
8/22/88	57	86	.00 .00	.00 .00				
8/23/88 8/24/88	64 65	78 94	.16	.00				
8/25/88	61	90	.24	.00	17.7	18.6	5	
8/26/88	60	100	.00	.00			7.5	
8/27/88 8/28/88	56 72	100 86	.00 .00	.00 .00			1.5	
8/29/88	62	78	.08	.00				
8/30/88	66	82	.93	.00	·			
8/31/88 9/ 1/88	56 57	86 88	.00 .00	.00 .00	16.3	18.9	7	
9/ 1/00	55	90	.00	.00	.0.5		•	
9/ 3/88	68	91	.00	.00				
9/ 4/88 9/ 5/88	59 65	78 82	.00 .00	.00 .00				
9/ 5/00	50	77	.76	.00				
9/ 7/88	47	80	.00	.00			-	
9/ 8/88	43	83	.00	.00 .00	16.9	19.	5	
9/ 9/88 9/10/88	47 64	88 90	.00 .00	.00				
9/11/88	58	93	.00	.00				
9/12/88	53	82	.04	.00				
9/13/88 9/14/88	68 59	95 85	.00 .00	.00 .00				
9/14/88	54	83	.00	.00	17.5	20.	2	
9/16/88	48	81	.00	.00				
9/17/88	56	73 89	.00 .00	.00 .00				
9/18/88 9/19/88	62 62	59 90	.16	.00			9.6	
9/20/88	62	84	.00	.00				
9/21/88	60	82	,10	.00				

Table 22	. Phase 1	environmental	history	(continued).
----------	-----------	---------------	---------	--------------

					Avg.	۸va	Subgrade	Subarade
	Min.	Max.			Moist.		Modulus	
Date	Temp. F	Temp. F	Rain	Snow	Lane 1			Lane 2
			in.	in.	*	*		ksi
9/22/88	56	81	.00	.00		18.7		
9/23/88	56	99	.00	.00				
9/24/88	63	72	.00	.00				
9/25/88	51	60 82	.00	.00				
9/26/88	52		.90	.00				
9/27/88 9/28/88	50 52	81	.00 .00	.00				
9/29/88	57	87 60	.00	.00 .00	17 1	19.3		
9/30/88	58	80	.00	.00		17.5		
10/ 1/88	57	83	.00	.00				
10/ 2/88	60 60 58	84	.00	.00				
10/ 3/88	60	66	.65	.00				
10/ 4/88	58	72	.13	.00				
10/ 5/88	47	69	.00	.00				
10/ 6/88	38	68 59	.00	.00	14.7	19.2		
10/ 7/88 10/ 8/88	36	59	.00	.00				
	34	63	.00	.00				
10/ 9/88 10/10/88	22 62	68 62	.00 .00	.00 .00				
10/11/88	58 47 38 34 32 42 42 38 32 27	68	.00	.00				
10/12/88	38	68 60	.00	.00				
10/13/88	32	53	.00	.00	16.7	18.4		
10/14/88	27	67 81	.00	.00				
10/15/88	38 32 27 37 42 45 56 46 36 38	81	.00	.00				
10/16/88	42	81	.00	.00				
10/17/88	45	78 66	.00	.00				
10/18/88	56	66	.00	.00				
10/19/88 10/20/88	40	64 65	.00	.00				
10/20/88	36 38	00	.00	.00				
10/22/88	38 40 45 46 35	50 67	.00 .00	.00 .00				
10/23/88	45	67 65	.00	.00				
10/24/88	46	65	1.48	.00	16.4	18.3		
10/25/88	35	66	.00	.00				
10/26/88	35 37	58	.00	.00				
10/27/88	37 28 38	59	.00	.00	16.9	19.1		
10/28/88	38	71	.00	.00				
10/29/88	32	60	.00	.00				
	32 39 27	56	.00	.00				
10/31/88 11/ 1/88	21 1.2	51 50	.00 .73	.00 .00				
11/ 2/88	42 36	52	.00	.00				
11/ 3/88	36 38	63	.00	.00				
11/ 3/88 11/ 4/88	38 42 58	70	.00	.00	14.7	18.5		
11/ 5/88	28	70 67	.00	.00				
11/ 6/88	44	64	.00	.00				
	47	54	.73	.00				
11/ 8/88	42	58	.00	.00				
11/ 9/88	38	60	.00	.00				
	40	60	.00	.00				
11/11/88 11/12/88	45 27	56	.00	.00				
11/13/88	43	53 65	.00 .00	.00 .00				
11/14/88	34	65	.30	.00				
11/15/88	33	64	.00	.00				
11/16/88	42	67	.00	.00				
11/17/88	50	58	.84	.00		17.8		
11/18/88	34	57	.00	.00				
11/19/88	30	46	.00	.00				
11/20/88	39	56	.00	.00				
11/21/88	34	56	.97	.00				
11/22/88	28	50	.00	.00				
11/23/88	25	57	.00	.00		18.8	I.	

_

•

	_Min.	Max.			Avg. Moist.		Subgrade Modulus	Subgrade Modulus
Date	Temp. F	Temp. F	Rain in.	Snow in.	Lane 1 %	Lane 2 %	Lane 1 ksi	Lane 2 ksi
11/24/88	 27	50	.00	.00		••••••		
11/25/88	24	53	.00	.00				
11/26/88	27	60	.00	.00				
11/27/88 11/28/88	54 43	66 53	.00 1.55	.00 .00				
11/29/88	33	50	-00	.00				
11/30/88	31	53	.00	.00				
12/ 1/88 12/ 2/88	34 29	51 47	.00 .00	.00		20.2		
12/ 3/88	27	64	.00	.00				
12/ 4/88	24	45	.00	.00				
12/ 5/88 12/ 6/88	30 27	53 60	.00 .00	.00 .00				
12/ 7/88	29	58	.00	.00				11.3
12/ 8/88	36	51	.00	.00				
12/ 9/99 12/10/88	34 18	35 35	.00 .00	.00 .00		18.8		
12/11/88	20	30	.00	.00				
12/12/88	17	23	1.25	.00				
12/13/88 12/14/88	5 18	26 46	.00 .00	.00 .00				
12/15/88	38	50	.00	.00				
12/16/88	20	32	.00	.00		19.3		
12/17/88 12/18/88	20 18	32 32	.00 .00	.00 .00				
12/19/88	25	50	.00	.00				
12/20/88	26	68	.00	.00				
12/21/88 12/22/88	50 27	52 45	.00 .10	.00 .00		18.9		
12/23/88	30	40	.00	.00		10.7		
12/24/88	20	58	.00	.00				
12/25/88 12/26/88	40 25	52 42	.00 .00	.00 .00				
12/27/88	30	46	.00	.00				
12/28/88	40	70	.00	.00				
12/29/88 12/30/88	22 24	35 39	.00 .00	.00 .00				
12/31/88	23	43	.00	.00				
1/ 1/89 1/ 2/89	31 31	33	.00	.00				
1/ 3/89	26	34 42	.00 1.12	.00 .00				
1/ 4/89	30	33	.00	1.00				
1/ 5/89 1/ 6/89	16 29	34 34	.00	.00				
1/ 7/89	30	33	.00 .00	5.00 .00				
1/ 8/89	30	43	.00	.00				
1/ 9/89 1/10/89	34 32	38	.50	.00				
1/11/89	25	37 50	.00 .00	.00 .00				
1/12/89	36	44	.46	.00		18.7		
1/13/89 1/14/89	36 18	40	.00	.00				
1/15/89	32	36 48	.00 .00	.00 .00				
1/16/89	36	46	.00	.00				
1/17/89 1/18/89	28 26	51 55	.00 .00	.00				
1/19/89	26	59	.00	.00 .00				
1/20/89	30	41	.00	.00		18.2		
1/21/89 1/22/89	20 18	33 46	.00 .00	.00 .00				
1/23/89	25	55	-00	.00				
1/24/89	24	61	.00	.00				
1/25/89	41	46	.00	.00				

Table 22. Phase 1 environmental history (continued).

Table 22.	Phase 3	l environmental	history	(continued).
-----------	---------	-----------------	---------	--------------

Date	Min. Tempi. F	Max. Temp. F	Rain in.	Snow in.	Avg. Moist. Lane 1 X	Avg. Moist. Lane 2 %	Subgrade Modulus Lane 1 ksi	Subgrade Modulus Lane 2 ksi
1/26/89	38	50	.00	.00				
1/27/89	38	58	.12	.00		17.8		
1/28/89	29	53	.00	.00				
1/29/89	30	62	.00	.00				
1/30/89	42	56	.00	.00				
1/31/89	31	58	.00	.00				
2/ 1/89	40	73	.00	.00				
2/ 2/89	38	64	.00	.00				10.6
2/ 3/89	32	46	.00	.00				
2/ 4/89	20	32	.00	.00				
2/ 5/89	27	33	.00	.00				
2/ 6/89	32	52	.56	.00				
2/ 7/89	30	40	.00	.00				
2/ 8/89	23	40	.00	.00				
2/ 9/89	17	26	.00	.00		18.3		
2/10/89	16	35	.00	.00				
2/11/89	18	50	.00	.00				
2/12/89	20	47	.00	.00				
2/13/89	24	32	.24	.00				
2/14/89	34	53	.52	.00				
2/15/89	45	67	.07	.00				
2/16/89	32	42	.28	.00		18.9		
2/17/89	28	37	.00	.00				
2/18/89	23	51	.00	.00				
2/19/89	30	54	.00	.00				
2/20/89	32	51	.00	.00				
2/21/89	39	52	.06	.00				
2/22/89	41	46	1.05	.00				
2/23/89	20	33	.22	.00		19.8		

Table 23.	Lane 1	reference	location	NDT data.
-----------	--------	-----------	----------	-----------

Test		Temp	AC	CAB	Load			Meas	ured	De	flec	tio	ns (1	mils)				Rac	dial	Of	fse	ts	(in)		Subgrade (Modulus ksi)
No.	Date	-		(in)	(lb)		1	2		3		4	5	6	1	2	2	3		4		5	6	SN	 d _o	d _s
1	8/27/87			5.0	8445	67.6	0 50	0.00	38.	10 2	21.60	8 (.10	2.90	.00	8.30) 13	5.00	20	.10	31	.90	50.00	1.78	4.5	16.1
23	10/29/87		5.0	5.0	7621	24.6	0 20).40	17.7	70 1	2.80) 7	.20	2.80	.00	8.30) 13	5.00	20.	.10	31.	.90	50.00	2.56	10.0	15.0
2	10/29/87 1/13/88	72.2	5.0	5.0	10608	38.6	0 32	2.10	28.2	20 2	20.90) 12	.00	4.70	.00	8.30) 13	5.00	20.	. 10	31.	.90	50.00	2.56	8.5	12.5
5	1/13/88	44.4 44.4	5.0 5.0	5.0 5.0	8857	22.9								3.90	.00	8.30	13	Ş. 00	20.	. 10	31.	.90	50.00	3.45	8.5	12.5
6	1/20/88	49.6	5.0	5.0	13183 12462	36.3								6.50	.00	8.30	13	5.00	20.	. 10	31.	.90	50.00	3.45	8.0	11.2
ž	1/28/88	32.4	5.0	5.0	12290	42.9	7 71 7 70	. 77	31.3		1.15		.70	7.70	.00	8.30	14	.60	20.	.10	29.	50	47.60	3.29	6.0	9.4
8	2/ 4/88	47.0	5.0	5.0	12428	32.9 42.9	J 23 7 70		27.2	00 2	2.73	10	.05	8.13	.00	8.30	14	.60	20.	. 10	31.	90	50.00	3.80	7.0	8.3
9	2/11/88	49.1	5.0	5.0	11535	41.6								8.50	.00	8.30	14	.60	20.	. 10	31.	90	50.00	3.37	5.5	8.1
10	2/22/88	54.4	5.0	5.0	11329	45.4	7 30	10	37.2	n z	7 57	10	.21	6.90 7.00	.00	8.30	14	.60	20.	.10	51.	90	50.00	3.31	5.5	9.2
11	3/ 7/88	80.2	5.0	5.0	11329	63.9	3 53	.43	42.0	3 3	3 00	17	50	6.00	.00 .00								50.00	3.14	5.0	8.9
12	6/ 2/88	77.2	5.0	5.0	10814	69.3								6.57	.00	8 30	14	40	20.	10	21.	90	50.00 50.00	2.28	5.0	10.4
13	9/19/88	88.7	5.0	5.0	8376	73.8								3.67	.00	8 30	14	. 60	20.	10	31.	00	50.00	2.39 1.99	4.0	9.1
14	8/27/87		4.5	5.0	8445	63.0	0 45	.30	33.7	01	8.70	7	.80	3.20	.00	8.30	13	.00	20	10	31	٥ <u>٥</u>	50.00	1.67	3.5	12.6 14.6
15			4.5	5.0	7724	23.7	0 19	.30	16.3	0 1	1.40	6	.20	2.40		8.30	13	.00	20.	10	31	٥Õ	50.00	2.38	12.0	14.0
16	10/29/87	72.2	4.5	5.0	10608	37.6	0 30	.70	26.5	0 1	8.90	10	.40	4.20									50.00	2.38	9.5	13.9
17	1/13/88	44.4	4.5	5.0	9269	25.10	0 21	.20	18.3	0 1	3.90	8	.00	3.30									50.00	3.18	9.0	15.5
18	1/13/88	44.4	4.5	5.0	12565	39.5	0 33	.10	29.0	0 2	2.50	13	.20	5.50	.00	8.30	13	.00	20.	10	31.	90	50.00	3.18	7.0	12.6
19	1/20/88	49.6	4.5	5.0	12565	43.3	0 37	.35	30.0	02	5.65	15	.40	6.10	.00	8.30	-14	.60	20.	10	29.	50	47.60	3.03	7.0	12.0
20 21	1/28/88	32.4	4.5	5.0	12565	29.9	5 26	.80	21.9	31	9.90	13	.33	6.50	.00	8.30	-14	.60	20.	10	31.	90	50.00	3.49	9.5	10.7
22	2/ 4/88 2/11/88	47.0 49.1	4.5 4.5	5.0	12324	44.9	7 39	.17	31.7	0 2	7.53	17	. 13	7.17	.00	8.30	14	.60	20.	10	31.	90	50.00	3.10	6.0	9.5
23	2/22/88	54.4	4.5	5.0 5.0	11535	43.7								6.00		8.30								3.05	5.5	10.6
24	3/ 7/88	80.2	4.5	5.0	11192 11329	48.50								6.03		8.30								2.90	5.0	10.2
25		76.5	4.5	5.0	8205	69.13 68.10								5.20		8.30								2.12	5.0	12.0
26	8/27/87		4.0	8.5	8445	50.80								4.03 3.00		8.30								2.24	3.0	11.2
27	8/27/87		4.0	8.5	12359	80.00								5.20		8.30								2.05	6.5	15.5
28			4.0	8.5	7621	20.10								2.50	.00	8.30 8.30	17	.00	20.	10	21.) 71.)	90	50.00	2.05	6.0	13.1
29	10/29/88		4.0	8.5	10505	32.10	26	.20	22.4	0 1	6.00	ő	20	4.20	.00	8.30	13	.00	20.	10	21. 71 (90 3 00 3	50.00	2.68 2.68	15.0	16.8
30	1/13/88	44.4	4.0	8.5	8857	22.00	18	.80	16.5	Õ 1	2.60	7.	90	3.80	.00	8.30	13	.00	20.	10	31.0	00 0	50.00	3.39	11.5 10.5	13.8
31			4.0		12874	33.50	28	.60	25.4	0 1	7.80	12.	60	6.30		8.30								3.39	9.5	12.9 11.3
32				8.5	12119	44.57	' 37	.83	33.3	3 2	5.47	15.	40	6.77		8.30								3.26	6.0	10.4
33					12393	29.30	25	.70	22.9	7 11	3.83	12.	73	6.63		8.30								3.67	10.0	10.3
34				8.5	12325	45.73	i 39.	.27	34.5	7 2	7.20	17.	23	8.03		8.30								3.33	6.0	8.5
35					11501	43.40								6.70	.00	8.30	14.	.60	20.1	10 3	31.9	20 5	50.00	3.28	5.5	9.5
36				8.5	9132	58.97	46	.90	38.0	7 2	5.83	12.	67	4.83	.00	8.30	14.	.60	20.	10 3	31.9	20	50.00	2.53	4.0	10.4
37				8.5	9029	62.10	48.	.83	38.9	5 2	5.83	12.	60	4.73	.00	8.30	14.	. 60	20.'	10 3	31.9	20 :	50.00	2.33	4.0	10.5
38 39				8.5	8823	53.27	42.	.83	54.5	<u>, 5</u>	.47	12.	60	4.90		8.30								2.29	5.0	9.9
39 40		77.2 97.0		8.5	9441	71.87	58.	.23	47.8	r 34	.33	18.	27	6.83		8.30								2.54	3.0	7.6
40	9/19/88			8.5 8.5	8205	71.47	23.	.07	20.17	20	:.95	10.	20	3.77		8.30								2.03	3.5	12.0
-71	7/17/00		4.U	0.7	10299	67.33	21.	.27	50.1	> 20	.50	15.	21	5.47	.00	8.30	14.	60	20.1	10 3	31.9	20 5	50.00	2.22	5.0	10.4

Table 24. Lane 2 reference location NDT data.

Test		Temp	AC	CAB	Load		Mea	sured	Deflec	tions	(mils)			R	adial	Offset	s (in)		Subgrade (Mosulus ksi)
No.	Date	(Ė)	(in)	(in)	(lb)	1	2	3	4	5	6	1	2	3	4	5	6	SN	do	 с,
1		57.1 57.1	6.5 6.5	11.0	8445		8.50			.4.00	2.20	.0	8.3			31.9	50.0	4.61	27.0	21.1
3		35.3	6.5	11.0	11226 9681		13.40		9.50 7.50	6.50	3.50	.0	8.3		20.1		50.0	4.61	20.5	17.7
4		35.3	6.5	11.0	13183	17.30				5.50 8.50	3.30 5.10	.0	8.3	14.6	20.1	31.9	50.0	5.46	18.0	16.2
5		45.6	6.5	11.0	12496	19.23				9.43	5.10	0. 0.	8.3 8.3	14.6	20.1	31.9 29.5	50.0 47.6	5.46	15.0	14.3
6	1/28/88	32.6	6.5	11.0	12256	14.26				7.90	4.73	.0	8.3	14.6	20.1	31.9	50.0	5.07 5.56	13.5 17.5	14.2
7	2/ 4/88	43.5	6.5	11.0	12720	19.75	17.25	15.70	13.05	9.45	5.60	.0	8.3	14.6	20.1	31.9	50.0	5.15	12.5	14.3 12.5
8		42.4	6.5	11.0	11947	18.03	15.63	14.20	11.67		4.87	.0	8.3	14.6	20.1	31.9	50.0	5.19	13.0	13.5
9		44.2	6.5	11.0	11329	17.90				8.13	4.73	.0	8.3	14.6	20.1	31.9	50.0	5.12	12.5	13.2
10		73.8	6.5	11.0	11741	23.33	19.60	17.03	13.23	8.9 0	4.80	.0	8.3	14.6	20.1	31.9	50.0	3.89	16.5	13.5
11		74.6	6.5	11.0	9681	20.13	16.47	13.80	10.77		3.53	.0	8.3	14.6	20.1	31.9	50.0	3.85	15.5	15.1
12 13		81.6 85.9	6.5	11.0	9475	23.70				7.00	3.57	.0	8.3	14.6	20.1	31.9	50.0	3.53	14.0	14.6
13		67.9 51.6	6.5 6.5	11.0 11.0	9132 11810	19.67 20.50				6.50	3.40	.0	8.3	14.6	20.1	31.9	50.0	3.34	22.0	14.8
15		57.1	7.5	11.0	8754		6.70	6.00		8.90 3.70	4.57 2.20	.0	8.3	14.6	20.1	31.9	50.0	4.83	12.0	14.3
16		57.1		11.0	11844	11.70			7.70	5.60	3.50	0. 0.	8.3 8.3	13.0 13.0	20.1	31.9	50.0	5.08	42.0	22.0
17		35.3		11.0	9990		7.60	6.80	6.10	4.80	3.10	.0	8.3	14.6	20.1	31.9 31.9	50.0 50.0	5.08	33.0	18.7
18		35.3		11.0	14419	12.60			9.20	7.20	4.80	.0	8.3	14.6	20.1	31.9	50.0	6.06 6.06	27.5 25.5	17.8 16.6
19	1/20/88	45.6		11.0	12393	14.67				8.20	5.20	.0	8.3	14.6	20.1	29.5	47.6	5.61	18.0	13.8
20		32.6	7.5	11.0	12325	11.30			8.67	6.97	4.70	.0	8.3	14.6	20.1	31.9	50.0	6.18	22.5	14.5
21		43.5		11.0	11226	13.27			9.60	7.37	4.70	.0	8.3	14.6	20.1	31.9	50.0	5.71	17.0	13.2
22		42.4		11.0	11878	13.67			9.80	7.43	4.73	.0	8.3	14.6	20.1	31.9	50.0	5.75	17.5	13.9
23		44.2		11.0	11432	13.83				7.30	4.60	.0	8.3	14.6	20.1	31.9	50.0	5.67	17.0	13.7
24 25		73.8 74.6		11.0	11741	19.03	16.40	13.87	11.80	8.13	4.63	.0	8.3	14.6	20.1	31.9	50.0	4.25	21.0	14.0
26		81.6		11.0 11.0	9750 9132	16.77 19.30				6.33	3.53	.0	8.3	14.6	20.1	31.9	50.0	4.21	19.0	15.2
27		85.9		11.0	9097	16.00				6.60 6.20	3.50 3.50	.0 .0	8.3	14.6	20.1	31.9	50.0	3.84	16.5	14.4
28		73.0			11226	25.15					5.80	.0	8.3 8.3	14.6 14.6	20.1	31.9 31.9	50.0 50.0	3.61	30.5	14.3
29	7/ 7/88 10			11.0	9338	30.23					3.70	.0	8.3	14.6	20.1	31.9	50.0	4.29 3.01	11.0 15.5	10.7
30		57.1		14.0	8960		7.20			4.10	2.50	.ŏ	8.3	13.0	20.1	31.9	50.0	5.50	42.5	13.9 19.8
31		57.1	7.5	14.0	11329	12.30				6.20	3.60	.õ	8.3	13.0	20.1	31.9	50.0	5.50	29.0	17.4
32		5.3		14.0	10299	9.20	8.30	7.60	6.90	5.40	3.50	.0	8.3	14.6	20.1	31.9	50.0	6.48	25.5	16.2
33		5.3		14.0	13904	13.70				8.40	5.50	.0	8.3	14.6	20.1	31.9	50.0	6.48	21.0	14.0
34		5.6		14.0	12668	16.33				9.07	5.50	.0	8.3		20.1	29.5	47.6	6.03	15.5	13.4
35		2.6			12496	13.03				8.07	5.40	.0	8.3	14.6	20.1	31.9	50.0	6.60	18.0	12.8
36 37					11329	14.83				8.50	5.30	.0	8.3	14.6	20.1		50.0	6.13	14.5	11.8
37 38					11947 11707	15.13 1 15.17 1					5.27	.0			20.1	31.9	50.0	6.17	15.0	12.5
39		3.8			11741	15.87				8.50 8.80	5.20	.0	8.3	14.6	20.1	31.9	50.0	6.09	14.5	12.4
40				14.0		19.00 1					3.90	.0 .0	8.3 8.3		20.1 20.1	31.9 31.9	50.0 50.0	4.67 4.63	32.5	12.2
41		1.6		14.0	9715	20.80					4.13	.0	8.3	14.6	20.1	31.9	50.0	4.05	15.5 16.5	14.0 13.0
42				14.0		18.63 1					3.63	.0	8.3	14.6	20.1	31.9	50.0	4.22	20.0	14.2
43	6/ 2/88 7	8.0				24.83 2					5.20	.0	8.3	14.6			50.0	4.45	14.5	12.4
																			•••••	

.

.

APPENDIX C. LANE 1, SECTION 1 DATA

Total Precip in	Max Air Temp F	Min Air Temp F	Avg Pvmt Temp F	Cumm Passes	Total Pass	19.0 kips	16.4 kips	14.1 kips	11.6 kips	9.4 kips	Date
 0	82	 52	59.7	5384	5384	 		5384			3/24/88
ŏ	83	54	59.5	12529	7145			7145			3/25/88
ŏ	59	52	53.6	12529	0			0			3/26/88
1.75	61	50		12529	0			0			3/27/88
0	66	31	58.9	12529	0			0			3/28/88
ŏ	78	37	58.9	17406	4877			4877			3/29/88
Ō	78	42	62.8	21909	4503			4503			3/30/88
0	73	53	65.6	26875	4966			4966			3/31/88
.03	80	52	58.7	34443	7568			7568			4/ 1/88
Ŏ	80	55	56.3	36799	2356			2356			4/ 2/88
Ó	79	53		36799	_ 0			0			4/ 3/88
.02	81	60	60.6	37033	234			234			4/ 4/88

Table 25. Lane 1, section 1 loading and environemental history.

Table 26. Lane 1, section 1 cracking history.

	No. of-			Li	neal C	rackin	g, in			
Date	Passes	21	25	29	33	37	41	45	49	Avş
3/24/88 3/28/88 3/30/88 3/31/88 4/ 4/88	0 12529 17406 21909 37033	0 0 12 24 141	0 139 351 589 1064	0 30 172 408 1097	0 32 147 267 896	0 10 31 113 594	0 0 0 137	0 0 77 182 689	0 0 63 194 767	26 26 107 222 673
No. of-	Crackir	ng and	Patch	ing, s	q. ft ,	/ 1000	sq. f	t		
Date	Passes	21	25	29	33	37	41	45	49	Avg
3/24/88 3/28/88 3/30/88 3/31/88 4/ 4/88	0 12529 17406 21909 37033	0 0 1 11	0 0 55 181 550	0 0 3 173 639	0 0 1 21 479	0 0 0 2 427	0 0 0 7	0 0 0 8 504	0 0 0 3 536	0 0 7 49 394

Table 27.	Lane 1.	section 1	ruttina	history.
-----------	---------	-----------	---------	----------

	No 4				Rut	Depth,	In			
Date	No. of Passes	21	25	29	33	37	41	45	49	Avg
3/22/88	0	.00	.00	.00	.00	.00	.00	.00	.00	.00
3/28/88	12529	.04	.33	.14	.16	.12	.06	. 16	. 18	. 15
3/30/88	17406	.06	.57	.37	.29	.25	.08	.22	.31	.27
3/31/88	21909	.06	.74	.51	.37	.31	.10	.29	.37	.34
4/ 1/88	26875	.08	.84	.81	.39	.43	.08	.39	.47	.44
4/ 4/88	36799	.10	1.00	1.08	.43	.61	.10	.51	.67	.56

Table 28. Lane 1, section 1 PSI history.

PSI	Craking and Patching sq ft/1000 sq ft	Avg Rut Depth in	Slope Variance 0.000001		Date
3.64	.0	.00	4.35	0	3/22/88
3.21	.0	. 15	7.62	12529	3/28/88
2.22	7.4	.27	24.47	21909	3/30/88
1.79	48.6	.34	36.82	26875	3/31/88
1.55	48.6	-44	43.48	34443	4/ 1/88
1.00	394.1	.57	57.97	37033	4/ 4/88

Table 29. Lane 1, section 1 NDT data.

					Dat	a of T	est Se	ection	Cento	rline							Da	ta	From	Out c	of Whe	elpath			
						S	urface	e Defl	ection	, mils				-				Su	rface	Defl	ectio	n, mils			
			Surf	Avg Pvmt			Radia	Offs	et, in	•••••			_	Pvmt Surf	Pvmt				Radia	l Off	set,	in			~
Date	No. of Passes	Sta	•	Temp F	Load	.00	8.30	15.40	20.10	31.90	50.0	SN	E, ksi	Temp F	Temp F	Load lbs		00	8.30	15.4	0 20.	10 31.90	50.0	SN	E, ks
10/88	0	21 25 28 29	65	76 75 75 75	9303 9338	52.30 50.87	42.63 41.13	32.40 32.03	24.63	12.50 12.20 13.03 12.67	4.23 4.67	2.16 2.14 2.16 2.26	5.7 5.6 5.7 6.1	52	70	11295	47.1	3 3(9.60	31.97	25.3	3 14.13	5.10	2.46	7.
		33 36 37 38	64 64 65	74 74 74 74	9269 9269 9303	42.70 41.73 39.03	36.20 34.87 32.80	28.53 28.90 28.20	23.13 22.67 21.47	12.97 12.93 12.40 11.63		2.36 2.38 2.46 2.54	6.5 6.6 7.0 7.3					_							
		41 45 49	62	73 73 73	9269	38.87	32.77	25.77	20.63	11.30 11.27 11.53	4.47 4.33 4.67	2.68 2.46 2.44	7.9 7.0 6.9	58	69	9956	40.2	3 34	4.13	28.93	5 23.1	0 13.63	5.20	2.32	6.
28/88	12529	21 25 28 29 33 36	68 71 72 72	75 75 76 76 77	8170 8205 7312 8239	76.20 68.10 56.80 62.03	57.70 50.77 42.57 47.93	38.70 39.27 30.93 36.67	25.93 27.00 23.80 23.87	11.57 9.60 12.93 11.37 10.77 13.10	3.03 4.03 3.30 3.97	1.98 1.42 1.58 1.68 1.74 2.02		71	79	9166	52.3	04:	3.03	35.93	6 26.3	0 13.47	4.40	2.12	5
		37 38 41 45 49	72 72 71 72	77 77 78 78 78	8308 8411 8445 8376	51.87 46.17 40.07 47.67	40.90 37.20 33.37 40.10	33.03 32.00 27.63 30.87	24.83 23.10 21.93 23.20	13.43 12.73 12.73 11.27 10.47	4.80 4.77 4.67 3.67	2.04 2.16 2.32 2.12 2.02	5.1 5.7 6.4 5.5	71	78	8411	41.4	73	4.43	29.73	2 2.4	0 12.70	4.53	2.28	6
51/88	21909	21 25 28 29 33	76 72 73 75	77 78 78 78 79 79	6454 6866 7072 7999	77.17 75.23 62.93 76.00	61.27 50.87 43.23 59.13	33.17 35.63 30.30 44.10	16.93 20.60 21.47 26.23	12.60 6.03 8.40 9.47 11.10 14.63	2.47 2.90	1.12	5.0 5.0 5.0	82	84	9029	64.6	3 5:	3.30	42.07	32.2	0 16.77	5.43	1.84	5
		36 37 38 41 45 49	76 76 76 76	79 80 80 81 82	8273 8445 9578 8960	60.93 56.10 60.87 73.73	47.53 44.93 49.60 63.23	39.23 39.07 39.10 46.03	28.27 27.00 31.43 33.27	14.63 14.47 14.23 17.00 13.87 12.83	4.97 5.30 5.37 4.40	1.78 1.96 2.02 1.60	5.0 5.0 5.1 5.0	81	84	9200	49.5	0 4	1.73	35.37	27.6	7 15.67	5.67	2.18	5

.

٠

:

				Dat	ta of	Test S	ection	Cente	rline				Data From Out of Wheelpath										
Pyrant Avy SurfPyra No.of Terang Terang	Ava		Surface Deflection, mils					Dumt			Surface Deflection, mils												
	Pvmt	Load			l Offs	Offset, in			E.	Surf	Pvmt Avg Surf Pvmt Temp Temp	Load		Radia	l Offs	Offset, in				_			
Date Passes	Sta	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ksi	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	E, k:
/ 4/88 37033	21 25 28 29 33 36 37 38 41 45 49	76 75 76 78 76 76	72 74 75 75 77 78 79 80 81 83	4978 2712 4669 6213 5253 6282 7896 9166	65.53 28.67 67.90 77.10 61.33 69.80 71.03 62.50	47.70 21.97 46.13 58.77 44.70 50.53 54.37 52.07	17.60 6.67 16.93 36.07 33.47 41.97 50.20 41.90	9.97 2.57 10.60 22.60 14.03 22.03 25.23	1.37 3.53 7.57 5.47 9.37 13.47 17.00	4.00 1.63 .73 1.60 3.20 2.17 3.40 4.97 5.43 2.77	1.26 1.04 0.96 1.08	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	79 77	84 84						16.70 15.93	5.77		-

Table 29. Lane 1, section 1 NDT data (continued).

APPENDIX D. LANE 1, SECTION 2 DATA

.

.

4

Table 30. Lane 1, section 2 loading and environmental history.

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min 'Air Temp F	Max Air Temp F	Total Precip in
12/14/87	•••••		1688	•••••		•••••	1688	1688	47.7	32	45	.0
12/15/87 12/16/87	199		200		7//		399	2087	41.3	36	42	.7
12/17/87	170		316		344		344 486	2431 2917	40.0 38.7	35 34	41 40	.0 .0
12/18/87		0					0	2917	50.7	28	40	.0
12/19/87		0					0	2917		30	45	.0
12/20/87		0			•		0	2917		39	63	. <u>o</u>
12/21/87 12/22/87		0					0	2917 2917		46 26	54 46	.3
12/23/87		ŏ					ŏ	2917		26	54	.0 .1
12/24/87		0					0	2917		32	58	.o
12/25/87		0					0	2917		46	65	.0
12/26/87 12/27/87		0 0					0	2917		35	56	.0
12/28/87		ŏ					0	2917 2917		29 34	42 36	.0 .5
12/29/87		ŏ					ŏ	2917		32	36	.4
12/30/87		0					0	2917		18	38	.0
12/31/87		0					0	2917		20	46	.0
1/ 1/88 1/ 2/88	•	· 0 0					0	2917		35	52	.0
1/ 3/88		ŏ					ŏ	2917 2917	•	16 14	35 32	.0 .0
1/ 4/88		ŏ					ŏ	2917	-	19	40	.6
1/ 5/88		0					0	2917		12	21	.0
1/ 6/88		612					612	3529	24.0	9	26	.0
1/ 7/88 1/ 8/88		2178 0					2178 0	5707 5707	24.7	10	25	.0
1/ 9/88		ŏ					ŏ	5707		17	33 38	.8 .0
1/10/88		ŏ					ŏ	5707		6	42	.0
1/11/88		2774				1	2774	8481	27.6	3	39	.0
1/12/88		. 0					0	8481	23.8	_8	38	.0
1/13/88 1/14/88		· 0 2732					0 2732	8481 11213	28.9 26.1	24 9	45	.0
1/15/88		2995					2995	14208	25.2	10	- 20	.0 .0
1/16/88		0					Ō	14208		8	47	.0
1/17/88		0	•			• •	0	14208		26	50	.0
1/18/88 1/19/88		7780 7715					7780	21988	36.0	35	52	.2
1/20/88		6469					7715 6469	29703 36172	33.9 34.4	32 36	48 40	.0 1.1
1/21/88		491					491	36663		.38	50	.0
1/22/88		4212					4212	40875	36.8	35	37	.0
1/23/88		0					0	40875		22	42	.0
1/24/88 1/25/88		0 3142					0	40875	36.5	22	52	. <u>o</u>
1/26/88		1404					3142 1404	44017 45421	36.3	33 18	38 33	.3 .4
1/27/88		6361				•	6361	51782	32.5	14	35	.0
1/28/88		5381					5381	57163	27.8	14	38	.0
1/29/88		5849					5849	63012	26.8	16	37	.0
1/30/88 1/31/88		0					0	63012 63012	26.1	. 19	52	.0
2/ 1/88		7673					0 7673	70685	25.9 31.8	37 55	63 71	.0 .0
2/ 2/88		1233					1233	71918	39.2	36	62	.0
2/ 3/88		0					0	71918	45.8	30	36	.6
2/ 4/88 2/ 5/88		0 7907					2007	71918	49.6	34	44	.3
2/ 5/00		1217					7907 1217	79825 81042	33.4 25.4	24 10	44 30	.0 .0
2/ 7/88		0					0	81042	24.2	25	30	.0
2/ 8/88		2920					2920	83962	30.3	20	44	.0
2/ 9/88		7051					7051	91013	31.4	23	40	.0
2/10/88 2/11/88		8367 2753					8367	99380	31.0	26	52	.0
2/11/00		2133					2123	102133	32.4	28	44	.0

• . . .

• .

Table 30. Lane 1, section 2 loading and environmental history (continued).

2/17/88 8682 8682 143654 34.4 25 58 .0 2/18/88 4042 4042 147696 36.8 30 60 .0 2/12/88 8423 8423 10556 30.8 36 40 .9 2/13/88 8328 8328 18884 25.0 18 33 .0 2/14/88 0 0 118884 26.8 20 49 .0 2/16/88 8487 7601 126485 32.1 34 52 .0	Da	te	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
6487 (54972 36.1 36 48 .3	2/18/ 2/12/ 2/13/ 2/13/ 2/14/ 2/15/	88 88 88 88 88		4042 8423 8328 0 7601					4042 8423 8328 0 7601	147696 110556 118884 118884	36.8 30.8 25.0 26.8	30 36 18 20	60 40 33 49	.0 .0 .9 .0 .0

Table 31. Lane 1, section 2 cracking history.

.

	No. of-			Line	al Cr	acking	, in			
Date	Passes	62	66	70	74	78	82	86	90	Avg
12/13/87	0	0	0	0	0					
1/ 9/88	29703	ŏ	ŏ	ŏ	ŏ	Ő	0	0	0	(
1/21/88	36670	ŏ	ō	ŏ	ŏ	0	0	0	22	
1/27/88	45421	ŏ	ŏ	ŏ	ŏ	ŏ	0	13	87	12
1/28/88	51781	ŏ	ŏ	ŏ	ŏ	Ŭ	0	111	357	58
2/ 1/88	65359	ŏ	- ō	ŏ	ŏ	ŏ	0 3	157	512	_ 84
2/ 3/88	71918	15	35	ŏ	ŏ	12		553	1084	205
2/11/88	99784	34	79	ŏ	ŏ	37	47	553	1084	218
2/15/88	118884	98	273	10	12	177	83	553	1084	234
2/19/88	147696	233	508	25	61	372	513 1007	553 553	1084 1084	340
		Crac	king ar	nd Pate	hing,					480
Date	No. of Passes	62	66					• • • • • •	******	
				70	74	78	82	86	90	Avg
	-	-	0	0	0	0	0		0	
2/13/87	0	0	v	~	~					
1/ 9/88	29703	Q	Ő	ŏ	ŏ	ŏ	-	0	-	0
1/ 9/88 1/21/83	29703 36670	0 0		-	-	Ō	Ő	Ō	ō	Õ
1/ 9/88 1/21/83 1/27/88	29703 36670 45421	0 0 0	0 0 0	Ō	Ō	0	0 0	-	0 0	Õ 0
1/ 9/88 1/21/83 1/27/88 1/28/88	29703 36670 45421 51781	0 0 0	0 0	0	0	0 0 0	0 0 0	0 0 1	0 0 196	0 0 24
1/ 9/88 1/21/83 1/27/88 1/28/88 2/ 1/88	29703 36670 45421 51781 65359	0 0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 3	0 0 196 292	0 0 24 37
1/ 9/88 1/21/83 1/27/88 1/28/88 2/ 1/88 2/ 1/88 2/ 3/88	29703 36670 45421 51781 65359 71918	000000000000000000000000000000000000000	0 0 0 0 0	0 0 0 0	000000000000000000000000000000000000000	0 0 0 0	0 0 0 0	0 0 1 3 6	0 0 196 292 591	0 24 37 75
1/ 9/88 1/21/83 1/27/88 1/28/88 2/ 1/88 2/ 3/88 2/11/88	29703 36670 45421 51781 65359 71918 99784	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 1 3 6 789	0 0 196 292 591 861	0 24 37 75 206
1/ 9/88 1/21/83 1/27/88 1/28/88 2/ 1/88 2/ 1/88 2/ 3/88	29703 36670 45421 51781 65359 71918	000000000000000000000000000000000000000	0 0 0 0 0	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0 0 0 0	0 0 0 0	0 0 1 3 6	0 0 196 292 591	0 24 37 75

	No. of				Rut De	pth, I	n			
Date	Passes	62	66	70	74	78	82	86	90	Avg
12/13/87 1/19/88 1/22/88 1/27/88 2/ 1/88 2/ 9/88 2/15/88 2/15/88 2/18/88	0 23007 36663 45990 65359 85479 118884 145404	.00 .00 02 .00 .00 .00 .00 .02 .02	.00 .06 .04 .08 .10 .14 .18 .41	.00 .04 .04 .06 .08 .04 .08 .08	.00 .06 .04 .08 .04 .04 .04 .08 .10	.00 .02 .00 .04 .02 .04 .06 .04	.00 .02 .02 .08 .04 .12 .29 .72	.00 .08 .10 .18 .27 .27 .27 .27	.00 .12 .16 .27 .67 .67 .67	0 .05 .05 .10 .15 .17 .21 .29

Table 32. Lane 1, section 2 rutting history.

••

Table 33. Lane 1, section 2 PSI history.

Date		Slope Variance 0.000001	Avg Rut Depth in	Craking and Patching sq ft/1000 sq ft	PSI
1/11/88 1/22/88 1/27/88 2/ 1/88 2/ 9/88 2/15/88 2/15/88 2/18/88	8481 40875 51782 70685 91013 126485 147696	1.78 2.03 3.43 12.02 23.20 41.00 79.28	.03 .05 .10 .15 .16 .21 .28	.0 .0 37.0 206.0 206.0 292.0 357.0	4.18 4.11 3.72 2.73 2.21 1.70 1.10

Table 34. Lane 1, section 2 NDT data.

· ·

			• • • •		va 	Ta of	ICST 5	ection	n Cent	erline							Data	From (Dut of	Wheel	path			
			Pvmt	Avg			Surfac	e Defi	ectio	n, mils				Pvmt			SL	rface	Deflec	tion,	mils		•••••	•••••
	No. of			Pvmt Temp			Radia	l Offs	iet, i	n			E,	Surf Temp	Pvnt	Land		Radia	Offse	t, in		*****		
Date	Passes	Sta	F	F	lbs	.00	8.30	15.40	20.1	0 31.90	50.0	SN	ks i	F	F	Load Ibs		8.30) 15.40	20.1	0 31.90	50.0	SN	E, ksi
1:/30/87	0	62			9990	22.80	20.30	18.30	14.3	0 8.90	4.30	3.36	10.8		*****	•••••						••••••		•••••
		66 70	48 46		9990	24.10	20.70	18.70	14.8	9.60	4.50													
		74	52		11535	28.60	20.30	22.00	17 4	0 11.90 0 11.30	5.50 5.30		10.1	48		12256	29.80	26.10	24.00	19.3) 12.90	6.20	3.26	10.4
		77	46		11947	29.40	25.40	23.10	18.10	0 11.70	5.40													
		78	55		11844	30.90	27.20	24.70	19.30) 12.10	5.40		9.9											
		79 82	52		11844	33.30	28.90	25.90	20.10) 12.40	5.40		9.4											
		02 86	55 55		11844	38.70	53.10	29.20	22.10	13.00	5.40		8.4	48		11741	34.10	30.00	27.50	21.60	13.90	6.30	2.96	9.1
		90	48		11535	33.20	28.00	20.00	21.60) 13.00	5.50	2.74	8.2											
												2.98	¥.2											
1/13/88	8481	62	43	38	13492	28.20	25.80	21.40	19.80	13.50	7.10	3.52	11.6											
		66	43	38	13286	30.20	26.60	24.40	20.30	14.10	7.40	3.36												
		70 74	44 46	28	13080	29.60	26.10	23.50	20.00	14.10	7.50		11.0	50	41	13801	28.70	25.70	23.60	19.90	14.10	7.40	3.52	11.6
		77	48	38	13080	30.20	20.00	23.00	20.40	14.20	7.30 7.20	3.34 3.30												
		78	50	- 39	13389	34.70	31.20	25.30	22.80	15.10	7.40	3.14	9.9											
		79	46	- 39	12977	37.60	33.00	26.90	23.50	15.20	7.40	2.98	9.2											
		82	46	- 39	12977 -	39.40	34.30	28.70	24.50	15 70	7.20	2.90	8.9	49	41	12977	33.80	30.00	26.70	22.90	15.50	7 50	3 14	0 0
		86 90	48 52	39	129//	46.50	38.50	30.90	26.30	16.20	7.20	2.68	7.9								12,20	1.50	3.14	7.7
		70	32	37	12771	49.20	42.00	34.00	27.70	14.90	6.30	2.58	7.5											
/20/88	29703	62	50	46	11569	35.13	32.87	25.97	24.93	16.13	7.80	2.90	RO											
		66	53	- 46 '	11089 :	38.17	33.30	31.43	24.67	16.53	7.80		8.1											•
		70	52	- 46 '	11604 🛛	36.83	32.97	28.07	24.93	16.83	8.17	2.84	8.6	53	49	11981	33.50	29.93	26.67	22.73	15.57	7.73	3 02	0 4
		74 77	51 52	40	11205	3/.07 70 07	33.30 35.80	29.50	24.67	16.33	7.70		8.3										2.02	7.4
		78	51	46	10917	44.60	40.77	30.90	20.20	10.85	7.43 7.37	2.72	8.1											
		79	51	46 1	12290	57.13	49.00	38.63	33.13	20.37	8.93	2.50	7.1											
		82	51	46 1	12393 9	58.43	49.93	42.07	34.87	21.30			6.4	54	49	12050	59.67	34.83	20 77	25 20	16 57	7 /0	3 79	o /
		86	52	47 1	11707	75.60	59.33 -	45.97	36.33	19.27	6.77	2.02	5.1		••					.,40	6.0	1.40	2.10	0.4
		90	53	47 1	2187	76.93	63.27	50 07	30.33	17 30			5.2											

717 04	1	and then 2 NDT data	(continued)
lable 34.	Lane I,	section 2 NDT data	(continued).

.

					Dat	ta of	Test S	ection	Cente	rline							Data	From	Out of	Wheelp	ath			
							Surfac	e Defl	ection	, mils				-	•		Su	rface	Defle	ction,	mils			
			Pvmt Surf			••••	Radia	l Offs	et, in						Pvnt			Radia	l Offs	et, in				-
Date	No. of Passes	Sta		Temp F	Load Ubs	.00	••••	• • • • • • •		31.90	50.0	SN	E, ksi	Temp F	Temp F	Load lbs		8.3	0 15.4	0 20.10	31.90	50.0	SN	E. ksi
/28/88	51728	62 66 70 74	33 33 37	34 34 35	11741 11501 11535	34.23 33.23 33.27	29.93 29.97 29.63	28.43 25.70 25.93	22.43 22.97 22.43	14.80 15.50 15.80 15.47 15.90	7.67 7.87 8.23 7.70 7.37	3.10 2.96 2.98 2.98 2.98 2.92	9.7 9.1 9.2 9.2 9.0	41	40	11432	28.10	25.2	0 22.4	7 19.40	13.67	7.00	3.24	10.3
		77 78 79 82 86 90	35 35 36	35 35 36 36	11295 11260 11363 12393	43.87 48.70 51.60 77.60	39.77 41.07 41.97 60.43	28.97 32.07 33.83 44.17	26.13 26.87 28.83 34.77	16.03 16.70 17.73 17.43 11.50	7.37 7.60 7.00 6.57	2.56 2.44 2.38 2.04 1.76	7.4 6.9 6.6 5.1 5.0	43	41	11329	32.70	28.8	7 24.6	57 21.33	5 14.20	6.57	2.98	9.2
/ 4/88	71918	62 66 70 74	43 43 44	43 43 43	11501 11432 11020	45.93 41.00 40.50	39.17 36.93 35.87	36.23 31.70 31.40	28.63 27.60 26.43	16.07 19.17 17.83 17.57 16.93	9.13 8.83	2.62 2.54 2.66 2.64 2.56	7.7 7.3 7.8 7.7 7.4	47	47	12565	34.43	\$ 30.7	0 27.0	3 23.53	3 16.37	8.20	3.06	9.
		77 78 79 82 86 90	43 43 46	44 46	11054 12016 12943 Tes	52.13 68.37 72.97 t Sect	46.60 57.03 60.77	33.97 43.17 51.92 tched	29.30 35.97 39.08 at Thi	16.80 19.60 22.57 s Loca s Loca	7.07 8.30 9.67 tion	2.34 2.14 2.14	6.4 5.6 5.6	46	47	12256	39.4	7 34.7	3 29.0	57 25.43	\$ 16.77	7.60	2.82	8.
2/11/88	99380	62 66 70 74 77	46 47 47	44 44 44	11947 11947 11775	50.40 43.40 45.37	42.03 38.93 38.87	41.13 33.80 33.73	30.33 28.57 28.10	17.17 20.07 18.43 18.63 17.87	9.17 8.93 8.57	2.54 2.46 2.66 2.58 2.54	7.3 6.8 7.8 7.5 7.3	50	49	11604	31.9	5 28.3	0 25.3	3 21.0	0 14.23	6.87	3.06	9.
		78 79 82 86 90	47 48 47	45 45	11638 11295 11466 Tes	56.27 66.73 73.25 t Sect	50.70 55.83 64.10	37.93 42.93 50.15 tched	30.53 32.13 37.73 at Thi	16.53 16.47 11.63 s Loca s Loca	6.53 6.10 5.93 tion	2.30 2.10	6.3 5.4	47	49	11535	37.7	5 32.4	0 27.1	30 22.6	0 14.07	6.07	2.80	8.

					Da	ta of	Test S	ectior	Cente	rline							Data	From O	ut of I	heelp	ath		•••••	
			Pvmt	Ava			Surfac	e D ef l	ection	, mils				D	•••••••••		Su	rface	Deflect	tion, i	nils			
1	No. of			Pvmt Temp			Radia	l Offs	et, in				ε.	Pvmt Surf	-	Load		Radial	Offse	;, in		*		_
Date I	Passes	Sta	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ksi	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	E, ks
2/22/88	147696	62 66 70 74 77 78	51 50 52 52 52 52	49 50 51 51	11501 11741 11604 11604	78.57 46.40 54.83 54.83	61.00 41.80 52.03 52.03	55.50 36.17 38.30 38.30	39.17 31.07 34.70 34.70	16.00 23.57 18.43 15.80 15.80 14.50	9.90	2.54 2.34 2.34		57	54	11398	36.90	32.53	28.47	23.87	15.60	7.17	2.82	8.
		79 82 86 90	52 54	51	9921 9097 Test	81.23 88.07 Sect	73.43 89.40 ion Pat	42.97 57.82 ched	32.43 34.62 at This	10.77 5.32 s Locat s Locat	4.27 2.98 ion	1.62	5.0	58	54	11398	42.33	36.23	31.03	25.17	15.27	6.13	2.62	7.

•

Table 34. Lane 1, section 2 NDT data (continued).

.

÷.

APPENDIX E. LANE 1, SECTION 4 DATA

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips		Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F		Total Precip in
3/ 1/88				7299	 	7299	7299	48.0	25	52	0
3/ 2/88				3152		3152	10451	33.4	24	64	0
3/ 3/88				425		425	10876	49.6	46	62	0
3/ 4/88				0		0	10876		43	56	0
3/ 5/88				0		0	10876		30	52	C
3/ 6/88				0		0	10876		31	61	Ċ
3/ 7/88				2425		2425	13301	60.1	31	65	Ċ
3/ 8/88				939		939	14240	43.1	30	63	.84

Table 35. Lane 1, section 4 loading and environmental history.

Table 36. Lane 1, section 4 cracking history.

	No. of				Linea	l Crack	cing,	in		
Date	Passes	135	139	143	147	151	155	159	163	Avg
2/29/88 3/ 3/88 3/ 8/88 3/ 9/88	0 10451 13301 14240	0 0 48 93	0 301 774 990	0 468 1127 1318	0 583 1048 1179	0 245 681 806	0 44 294 426	0 229 592 676	0 64 286 402	0 242 606 736
	No. of-	Crac	king a	nd Pat	ching,	sq. fi	/ 10	00 sq.	ft	
Date	Passes	135	139	143	147	151	155	159	163	Avg
2/29/88 3/ 3/88 3/ 8/88 3/ 9/88	0 10451 13301 14240	0 0 0 1	0 99 340 493	0 221 709 713	0 314 929 971	0 109 341 411	0 0 17 73	0 2 430 476	0 0 1 17	0 93 346 394

Table 37. Lane 1, section 4 rutting history.

•••••					Rut D	epth,	In			•••••
Date	No. of Passes	135	139	143	147	151	155	159	163	Avg
2/29/88 3/ 3/88 3/ 8/88 3/ 9/88	0 10451 13301 14240	.00 .16 .33 .39	.00 .61 .94 1.00	1.54	.74	.00 .37 .92 1.19	.00 .20 .39 .43	.00 .41 .67 .74	.00 .22 .41 .47	.00 .40 .74 1.06

Table 38. Lane 1, section 4 PSI history.

Date		Slope Variance 0.000001	Avg Rut Depth in	Craking and Patching sq ft/1000 sq ft	PSI
2/29/88	0	2.73	.00	.0	3.94
3/ 3/88	10876	14.72	.40	93.1	2.43
3/ 8/88	13301	39.69	.74	345.9	1.01
3/ 9/88	14240	50.39	1.06	394.5	.01

Table 39. Lane 1, section 4 NDT data.

					Da [.]	ta of	Test S	ection	n Cente	rline							Data	From (Dut of	Wheelp	ath			
			Pvmt	≜ va			Surfac	e Defi	lection	, mils				Pvmt	A		Su	rface	Defle	tion,	mils			
	No. of		Surf		Load				set, in				-	Surf	Pvmt			Radia	Offse	et, in				
Date	Passes	Sta		F	lbs					31.90	50.0	SN	E. ksi	Temp F	iemp F	Load lbs		8.30) 15.40	20.10	31.90	50.0	SN	E, ksi
2/22/88	0	135	55	55	11672	51.17	44.73	37.30	31.10	19.53	8.13	2.44	6.9								•••••	*****		
		139	55	56	11501	59.23	50.77	40.83	33.60	20.17	8.30	2.26	6.1											
		143 147	55 55	22	11127	20.40	49.73	40.80) 34.45	20.97	8.40 8.60	2.28	6.2 5.7	52	53	11295	53.43	45.83	5 38.37	32.53	21.00	9.10	2.36	6.
		150		55	11123	51.53	44.20	39.87	7 30.83	19.83	8.77	2.38	6.6											
		151	54	55	11329	48.83	42.27	38.17	30.03	19.63	8.77	2.40	6.7											
		152	54	55	11192	46.57	40.73	36.53	\$ 29.43	19.47	8.77	2.52												
		155	54	54	11260	49.77	44.03	36.63	30.83	18.90	7.50	2.44	6.9	52	53	11295	42.17	37.77	33.20	28.40	18.93	8.50	2.64	7.7
		159 163	54 54	54	11260	59.57	49.07	39.20	30.20	16.80	6.37		6.0											
												2.40	6.7											
/ 7/88	10876	135 139	72 69	74 75	9132	65.13	55.17	42.83	34.73	18.37														
		143	71	76	8376	80 07	87 23	55.57 63 20	36.87	12.27	3.97 3.60	1.52	5.0 5.0	70	80	7104	E4 /7	10.00	24 27	2/ 40	13.13	(50		- /
		147	72	77	7621	65.80	76.97	52.27	28.57	10.50	3.73	1.60	5.0	70	00	1100	51.45	40.90	51.57	24.00	12.12	4.30	1.00	5.0
		150	70	77	7209	82.90	64.57	51.13	26.37	13.07	5.30	1.26	5.0											
		151	71	77	7209	64.83	47.47	41.43	27.83	14.87	5.20	1.56	5.0											
		152 155	70 71	78 78	8239	60.93	48.97	44.00	30.90	16.87		1.87	5.0	-										
		155	71	79					28.70	13.27	4.40	1.72	5.0 5.0	71	80	7690	37.23	31.43	26.50	21.03	12.10	4.47	2.34	6.4
		163	73	79						10.50		1.62												
/10/88	14240	135	59	64	8102	56.87	47.60	37:00	27 57	12.03	3 07	1 94	5 0											
		139	60	65	5498	65.00	49.60	24.10	11.37	3.13	1.73	1.22	5.0											
		143				/ement								63	74	7106	40.40	32.73	24.83	19.77	10.67	3.87	2.16	5.7
		147				ement						_												
		150 151	60 59	67 68	7175	75.07	58.57	20.23	14.70	3.70														
		152	61	69					12.97		1.77	1.20	5.0 5.0											
		155	61	70					18.87	7.97	3.30	1.82	5.0	65	74	7724	28.37	24.47	20.67	16.93	10.13	3.03	2.68	7 9
		159	62	70	4875	60.67	44.37	24.90	11.30	4.73	1.97	1.18	5.0				20.57	64.41	2010/	.0.75	10.15	5.75	2.00	
		163	61	71	5150	51.47	34.13	23.30	8.90	4.43		1.42	5.0											

APPENDIX F. LANE 2, SECTION 1 DATA

Table 40. Lane 2, section 1 loading and environmental history.

.

.

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Тетр F	Total Precip in
4/29/88				6711			6711	6711	52.9	42	64	.0
4/30/88				9076			9076	15787	55.4	47	71	.0
5/ 1/88 5/ 2/88				315 1822			315	16102	51.2	40	79	.0
5/ 3/88				7249			1822 7249	17924 25173	56.8 52.3	44 44	66 63	.0 .1
5/ 4/88				7607			7607	32780	50.1	48	62	.0
5/ 5/88				6546			6546	39326	51.9	52	63	.8
5/ 6/88				8558			8558	47884	52.2	55	88	.9
5/ 7/88 5/ 8/88				3155 0			3155 0	51039 51039	54.1	48	80	.0
5/ 9/88				ŏ			ŏ	51039	52.8 66.8	50 58	81 80	.0 .0
5/10/88				0			0	51039		58	84	.3
5/11/88		500		823			823	51862	59.9	56	81	.3
5/12/88 5/13/88		508 178		267 0			775 178	52637 52815		57 6 5	83 88	.0
5/14/88				ŏ				52815		58	89	.0 .0
5/15/88				0			0	52815		60	84	.0
5/16/88 5/17/88		444		0			, , ,	52815	<i>(</i> 0 -	56	86	.0
5/18/88	1904	444		0			444 1904	53259 55163	68.7	61 59	82 72	1.2
5/19/88				ŏ			0	55163		59	76	1.1
5/20/88	208	243	222	0			673	55836		60	89	.0
5/21/88				0			0	55836		61	88	.2
5/22/88 5/23/88				0 303	508	168	0 979	55836 56815	70.1	53 64	82	.0
5/24/88		249	180	179	200	100	608	57423	74.2	61	93 91	.0 .9
5/25/88		124		4065			4189	61612	57.4	54	66	.3
5/26/88				8624			8624	70236	60.6	52	78	.1
5/27/88 5/28/88				4974 130			4974 130	75210 75340	63.7 64.3	43 48	78	.0
5/29/88				0			0	75340	65.3	51	83 86	.0 .0
5/30/88				0			Ō	75340	67.1	55	89	.0
5/31/88				8162			8162	83502	74.2	61	98	.0
6/ 1/88 6/ 2/88				7845 5799			7845 5799	91347 97146	74.1 65.2	6 3 57	97 70	.1
6/ 3/88				8382			8382	105528	60.5	52	70 92	.0 .0
6/ 4/88				9070			9070	114598	60.5	49	78	.0
6/ 5/88 6/ 6/88				291			291	114889	60.1	45	89	.0
6/7/88				8125 7410			8125 7410	123014 130424	70.5 76.4	65 72	94	.0
6/ 8/88				7290			7290	137714	74.1	65	100 90	.0 .0
6/ 9/88				6865			6865	144579	60.2	55	58	.0
6/10/88				8597			8597	153176	60.1	55	78	.3
6/11/88 6/12/88				8748 0			8748 0	161924 161924	65.0 62.5	48 52	86	-0
6/13/88				6403			6403	168327	70.1	60	88 99	.0 .0
6/14/88				8362			8362	176689	73.4	60	100	.0
6/15/88				5832			5832	182521	78.8	63	101	.0
6/16/88 6/17/88				3186 4712			3186 4712	185707 190419	79.0 76.6	70 70	96	.2
6/18/88				9092			9092	199511	76.7	68	87 97	.0 .0
6/19/88				2208			2208	201719	74.5	70	98	.ŏ
6/20/88				7059			7059	208778	87.3	65	102	.0
6/21/88 6/22/88				2367 3933			2367 3933	211145 215078	84.8	70	106	.0
6/23/88				8349			8349	223427	86.1 84.6	70 72	107 102	.0 .0
6/24/88				7904			7904	231331	78.8	74	106	.0
6/25/88				2877			2877	234208	78.0	63	91	.0
6/26/88 6/27/88				0 7831			0	234208 242039	77.3	73	102	.0
6/28/88				2355			7831 2355	242039	78.5 76.4	66 64	88 89	.0 .0
							رروب	644374	10.4	04	09	.0

Table 40. Lane 2, section 1 loading and environmental history (continued).

	• •								Avg Pvmt	Min Air	Max Air	Total
Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 To kips Pa	tal ass	Cumm Passes	Temp F	Temp F	Temp F	Precip in
6/29/88				3007		3(007	247401	77.4	58	 86	 0.
6/30/88				8490			490	255891	73.2	55	81	.0
7/ 1/88 7/ 2/88				8753			753	264644	70.5	58	84	.0
7/ 3/88				8006 0		8	206	272650	70.8	50	92	.0
7/ 4/88				ŏ			0	272650 272650	73.5 76.9	58	88	.0
7/ 5/88				6337		63	337	278987	76.6	64 63	101 96	0. 0.
7/ 6/88				3882			382	282869	78.4	64	102	.0
7/ 7/88				5153		51	153	288022	98.1	72	104	.ŏ
7/ 8/88 7/ 9/88				2055		20)55	290077	83.8	72	103	.0
7/10/88				0			0	290077	81.1	73	104	.0
7/11/88				7827		75	0 327	290077 297904	82.8 81.0	70	106	.0
7/12/88				5930			30	303834	72.4	70 71	102 86	.1 .0
7/13/88				8363			363	312197	78.9	70	96	.1
7/14/88				3885			385	316082	82.1	70	102	.o
7/15/88				789		7	789	316871	81.0	78	105	.0
7/16/88 7/17/88				0 0			0	316871		72	102	.0
7/18/88				7861		70	0	316871	07 /	80	104	.1
7/19/88				7788			361 788	324732 332520	87.4 78.2	74 72	100 100	.9
7/20/88				4907			07	337427	75.5	74	96	.1 .5
7/21/88				2394			94	339821	74.0	73	92	.0
7/22/88				0			0	339821		69	98	.0
7/23/88 7/24/88				6299			99	346120	75.2	72	82	.0
7/25/88				9092 7932			92	355212	75.5	68	99	.0
7/26/88				8118			32 18	363144 371262	78.4 76.9	65 73	92	.8
7/27/88				6208			80	377470	71.9	68	92 88	.0 1.2
7/28/88				9022			22	386492	74.5	70	93	.0
7/29/88				8165			65	394657	79.1	69	103	.0
7/30/88 7/31/88				9097			97	403754	81.9	72	104	.0
8/ 1/88				131 8650			31	403885	82.1	72	102	.0
8/ 2/88				5981		59	50 81	412535 418516	81.7 88.3	72 72	102	.0
8/ 3/88				7461		74		425977	82.5	73	102 98	0. 0.
8/ 4/88				9101		91		435078	81.4	72	96	.0
8/ 5/88				8569		85		443647	81.5	74	100	.0
8/6/88				8414		84		452061	81.0	72	100	.2
8/ 7/88 8/ 8/88				0 7038		70	0	452061	73.9	73	101	.0
8/ 9/88				8805		70 88		459099 467904	83.6	68	100	.0
8/10/88				6748		67		474652	80.5 81.2	68 73	100 102	.0
8/11/88				8907		89		483559	82.5	70	97	.0 .0
8/12/88				5054		50		488613	85.8	76	108	.0
8/13/88				8138		81		496751	87.6	77	108	.0
8/14/88 8/15/88				127 6671			27	496878	82.3	79	109	.0
8/16/88				8710		66 87		503549 512259	90.8 80.1	76 67	108	.5
8/17/88				7181		71		519440	81.4	67 67	100 106	.0
8/18/88				9034		90	34	528474	78.4	73	95	.1 .1
8/19/88				7966		79	66	536440	72.8	64	80	.0
8/20/88				8053		80		544493	67.9	68	71	.0
8/21/88 8/22/88				446				544939	66.4	69	90	1.0
8/23/88		61	61	8222 6628	185	82		553161	74.5	57	86	.0
8/24/88			01	8522	105	69) 85)	22	560096 568618	68.9 72.0	64 65	78	.0
8/25/88				6563		65	53	575181	72.0	65 61	94 90	.2 .2
8/26/88				8157		81		583338	74.9	60	100	.2
8/27/88				8410		84	10	591748	76.4	56	100	.0
8/28/88				5745		57	45	597493	75.4	72	86	.ŏ
8/29/88 8/30/88				8671		867		606164	70.8	62	78	.1
				8743 8285		874 828		614907 623192	67.5 67.5	66 56	82 86	.9 .0
8/31/88												

Table 40. Lane 2, section 1 loading and environmental history (continued).

									Avg I	in I	iax .	
	• •			• • •					Pvmt	Air	Air	Total
Date	9.4 kips	11.6 kips	14.1	16.4	19.0		Total	Cumn	Temp	Temp		Precip
		kips	kips	kips	kips	kips	Pass	Passes	F	F	F	in
9/ 2/88				8536			8536	639570	69.6	55	90	.0
9/ 3/88				8485			8485	648055	70.5	68	91	.0
9/ 4/88				0			Ō	648055	69.1	59	78	.0
9/ 5/88				0			0	648055	69.4	65	82	.0
9/6/88				8117			8117	656172	66.3	50	77	.7
9/ 7/88 9/ 8/88				7479 7712			7479	663651	66.3	47	80	.0
9/ 9/88				7356			7712 7356	671363 678719	63.8	43	83	.0
9/10/88				8653			8653	687372	66.9 68.6	47 64	88 90	.0 .0
9/11/88				0			0	687372	67.2	58	93	.0
9/12/88				8457			8457	695829	71.2	53	82	.0
9/13/88				2385			2385	698214	77.9	68	95	.0
9/14/88 9/15/88				3026			3026	701240	72.6	59	85	.0
9/16/88				8400 8514			8400	709640	71.0	54	83	.0
9/17/88				8494			8514 8494	718154 726648	63.8 62.4	48	81	.0
9/18/88				0			0	726648	63.9	56 62	73 89	.0
9/19/88				5961			5961	732609	73.8	62	90	.0 .2
9/20/88				9085			9085	741694	73.1	62	84	.0
9/21/88				8144			8144	749838	68.5	60	82	.1
9/22/88				0			0	749838	63.6	56	81	.0
9/23/88 9/24/88				0 0			0	749838		56	99	.0
9/25/88				0			0	749838		63	72	.0
9/26/88				3883			0 3883	749838 753721	67.8	51 52	60	.0
9/27/88				8378			8378	762099	64.5	50	82 81	.9 .0
9/28/88				8418			8418	770517	65.2	52	87	.0
9/29/88				9075			9075	779592	60.9	57	60	.0
9/30/88				8219			8219	787811	63.0	58	80	.0
10/ 1/88				8558			8558	796369	65.7	57	83	.0
10/ 2/88 10/ 3/88				0 8706			0	796369	66.0	60	84	. <u>o</u>
10/ 4/88				8603			8706 8603	805075 813678	61.0	60	66	.7
10/ 5/88				6470			6470	820148	57.9 57.4	58 47	72 69	.1
10/ 6/88				4866			4866	825014	56.2	38	68	0. 0.
10/ 7/88				4240			4240	829254	53.2	36	59	.0
10/ 8/88				2790			2790	832044	52.6	34	63	.0
10/ 9/88				0			0	832044	50.6	32	68	.0
10/10/88 10/11/88				8355			8355	840399	58.2	42	62	.0
10/12/88				6342 2857			6342	846741	58.7	42	68	.0
10/13/88				8758			2857 8758	849598 858356	54.0 49.9	38	60	.0
10/14/88				8378			8378	866734	48.0	32 27	53 67	.0
10/15/88				Ō			Ū.	866734	54.0	37	81	.0 .0
10/16/88				0			Õ	866734	58.3	42	81	.0
10/17/88				8823			8823	875557	60.6	45	78	.0
10/18/88 10/19/88				8715			8715	884272	57.3	56	66	.0
10/20/88				8679 3650			8679	892951	54.8	46	64	.0
10/21/88				8776			3650 8776	896601 905377	51.8 51.6	36	65	.0
10/22/88				7254			7254	912631	51.1	38 40	50 67	.0
10/23/88				Ő			0	912631	51.6	45	65	.0 .0
10/24/88				5393			5393	918024	54.6	46	65	1.5
10/25/88				9070			9070	927094	53.2	35	66	.0
10/26/88				7765			7765	934859	53.8	37	58	.0
10/27/88 10/28/88				8123			8123	942982	48.8	28	59	.0
10/29/88				8457 8492			8457 8492	951439	51.6	38	71	.0
10/30/88				7892			7892	959931 967823	51.4 49.9	32 39	60	.0
10/31/88				0			1092	967823	49.9	27	56 51	.0
11/ 1/88				ō			ŏ	967323	7616	42	50	.0 .7
11/ 2/88				247			247	968070		36	52	.0
11/ 3/88				8061			8061	976131	55.2	38	63	.0
11/ 4/88				8691			8691	984822	53.7	42	70	.0
11/ 5/88				8470			8470	993292	55.7	58	67	.0

•

Table 40.	Lane 2,	section l	loading and	t environmental	history	(continued).
-----------	---------	-----------	-------------	-----------------	---------	--------------

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
11/ 6/88				0	-		0	993292	53.2		64	
11/ 7/88				7747			7747	1001039	51.1	47	54	.7
11/ 8/88				9073			9073	1010112	47.2	42	58	.0
11/ 9/88				8600			8600	1018712	50.1	38	60	.0
11/10/88				2949			2949	1021661	47.8	40	60	.0
11/11/88				0			0	1021661		45	56	.0
11/12/88				0			0	1021661		27	53	.0
11/13/88				0			0	1021661		43	65	.0
11/14/88				5025			5025	1026686	55.6	34	65	.3
11/15/88				8340				1035026	52.5	33	64	.0
11/16/88				8659				1043685	54.4	42	67	.0
11/17/88				9018				1052703	53.4	50	58	.8
11/18/88				8395				1061098	49.6	34	57	.0
11/19/88				9066				1070164	44.6	30	46	.0
11/20/88				1066				1071230	44.4	39	56	.0
11/21/88				8453				1079683	47.3	34	56	1.0
11/22/88				8518				1088201	44.2	28	50	.0
11/23/88				3679				1091880	44.3	25	57	.0
11/24/88				0			0		44.9	27	50	.0
11/25/88				0 0			0	1091880	45.8	24	53	.0
11/26/88 11/27/88				0			0	1091880	39.6	27	60	.0
11/28/88				0			0	1091880		54	66	.0
11/29/88				8231			8231			43	53	1.6
11/30/88				1428			1428		50.5	33	50	.0
12/ 1/88				672				1102211	51.1	31	53	.0
12/ 1/88				7519 8668			7519	1109730	48.5	34	51	.0
12/ 3/88								1118398	43.4	29	47	.0
12/ 3/08				6987			0781	1125385	48.7	27	64	.0

Table 41. Lane 2, section 1 cracking history.

			Line	al Cra	cking,	in			*****
No. of- Passes	21	25	29	33	37	41	45	49	Avg
0 290444 365144 452061 528706 615660 701240 813678 1053722 1125385	0 0 0 0 0 0 6 38 45	0 0 17 49 87 98 108 115 152 182	0 0 11 15 33 62 92 209 249	0 0 0 0 10 18 24 24	0 24 24 24 24 24 24 24 35 35 35	0 11 11 11 11 11 11 14 18 18	0 0 0 0 0 0 3 3 3	0 0 14 14 41 41 75 118 118	0 4 14 19 26 32 44 75 84
No of	Crac	king a	nd Pat	ching,	sq. ft	: / 10	00 sq.	ft	•••••
Passes	21	25	29	33	37	41	45	49	Avg
0 290444 365144 452061 528706 615660 701240 813678 1053722 1125385	0 0 0 0 0 0 0 0 0 2 2	0 0 1 6 7 7 58 168	0 0 0 0 1 2 96 100	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 1 1	0 0 0 0 0 0 0 0 0	0 0 0 1 1 7 18 18	0 0 0 1 1 1 2 22 36
	0 290444 365144 452061 528706 615660 701240 813678 1053722 1125385 No. of Passes 0 290444 365144 452061 528706 615660 701240 813678 1053722	Passes 21 0 0 290444 0 365144 0 452061 0 528706 0 615660 0 701240 0 813678 6 1053722 38 1125385 45 Crack No. of Passes 21 0 0 290444 0 365144 0 452061 0 528706 0 615660 0 701240 0 813678 0 1053722 2	Passes 21 25 0 0 0 0 29044 0 0 365144 17 452061 0 49 528706 0 87 615660 0 98 701240 108 813678 6 115 1053722 38 152 1125385 45 182 Cracking a No. of Passes 21 25 0 0 0 0 290444 0 365144 0 365144 0 1 528706 6 615660 0 7 701240 7 701240 0 7 813678 7 1053722 2 58 25	No. of Passes 21 25 29 0 0 0 0 290444 0 0 365144 0 17 0 452061 0 49 11 528706 0 87 15 615660 0 98 33 701240 0 108 62 813678 6 115 92 1053722 38 152 209 1125385 45 182 249 Cracking and Pat No. of Passes 21 25 29 0 0 0 0 0 290444 0 0 365144 0 0 290444 0 0 365144 0 37 0 37 0 37 0 38 0 37 0 38 0 37 0 38 0 30 0	No. of Passes 21 25 29 33 0 0 0 0 0 0 290444 0 0 0 0 365144 0 17 0 0 452061 0 49 11 0 528706 0 87 15 0 615660 0 98 33 0 701240 0 108 62 10 813678 6 115 92 18 1053722 38 152 209 24 1125385 45 182 249 24 Cracking and Patching, No. of Passes 21 25 29 33 0 0 0 0 0 0 290444 0 0 0 0 290444 0 0 0 0 365144 0 0 0 0 290444 0 0 0 0 365144 0 0 0 0 528706 0 6 0 0 615660 0 7 0 0 615660 0 7 2 0 1053722 2 58 96 0	No. of Passes 21 25 29 33 37 0 0 0 0 0 0 0 0 290444 0 0 0 0 24 365144 0 17 0 0 24 452061 0 49 11 0 24 615660 0 98 33 0 24 701240 0 108 62 10 24 813678 6 115 92 18 35 1053722 38 152 209 24 35 1125385 45 182 249 24 35 Cracking and Patching, sq. fit No. of Passes 21 25 29 33 37 0 0 0 0 0 0 0 290444 0 0 0 0 365144 0 0 0 0 0 528706 0 6 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1	Passes212529333741000000029044400002411365144017002411452061049110241152870608715024116156600983302411701240010862102411105372238152209243518112538545182249243518Cracking and Patching, sq. ft / 100No. of00000290444000000290444000000365144000000528706060000615660070000813678072001105372225896001	No. of Passes 21 25 29 33 37 41 45 0 0 0 0 0 0 0 0 0 0 290444 0 0 0 0 24 11 0 365144 0 17 0 0 24 11 0 452061 0 49 11 0 24 11 0 615660 0 98 33 0 24 11 0 615660 0 98 33 0 24 11 0 701240 0 108 62 10 24 11 0 813678 6 115 92 18 35 14 0 1053722 38 152 209 24 35 18 3 1125385 45 182 249 24 35 18 3 125385 45 182 249 24 35 18 3 Cracking and Patching, sq. ft / 1000 sq. No. of Passes 21 25 29 33 37 41 45 0 0 0 0 0 0 0 0 0 0 290444 0 0 0 0 0 0 0 290444 0 0 0 0 0 0 0 290444 0 0 0 0 0 0 0 365144 0 0 0 0 0 0 0 452061 0 1 0 0 0 0 0 528706 0 6 0 0 0 0 0 615660 0 7 0 0 0 0 0 615660 0 7 1 0 0 0 0 813678 0 7 2 0 0 1 0 813678 0 7 2 0 0 1 0	No. of Passes 21 25 29 33 37 41 45 49 0 0 0 0 0 0 0 0 0 0 0 0 290444 0 0 0 0 24 11 0 0 365144 0 17 0 0 24 11 0 14 528706 0 87 15 0 24 11 0 14 528706 0 87 15 0 24 11 0 14 615660 0 98 33 0 24 11 0 41 701240 0 108 62 10 24 11 0 41 813678 6 115 92 18 35 14 0 75 1053722 38 152 209 24 35 18 3 118 1125385 45 182 249 24 35 18 3 118 125385 45 182 249 24 35 18 3 118 Cracking and Patching, sq. ft / 1000 sq. ft No. of Passes 21 25 29 33 37 41 45 49 0 0 0 0 0 0 0 0 0 0 0 365144 0 0 0 0 0 0 0 0 290444 0 0 0 0 0 0 0 0 365144 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 13 13678 0 7 2 0 0 1 0 7 1053722 2 58 96 0 0 1 0 18

	No. of				Rut	Depth,	In		•••••	
Date	Passes	21	25	29	33	37	41	45	49	Avg
Late 4/28/88 5/ 4/88 5/ 9/88 6/ 1/88 6/ 1/88 6/13/88 6/13/88 6/13/88 6/23/88 6/30/88 7/ 7/88 7/14/88 7/21/88 7/21/88 8/31/88 8/10/88 8/10/88 8/11/388 9/21/88 9/21/88 10/5/88 10/5/88 10/20/88 10/26/88	Passes 0 25173 51039 83778 130424 162186 185707 215584 249503 282807 312197 337828 372853 419121 468535 512848 561630 615660 657307 701240 615660 657307 701240 742113 763814 813678 846741 8928179 970391	.00 .02 .02 .04 .10 .08 .12 .12 .16 .16 .18 .27 .29 .33 .31 .35 .33 .31 .33 .33 .33 .33	.00 02 .00 .10 .18 .16 .16 .225 .27 .31 .31 .39 .49 .49 .51 .49 .27 .49 .51	.00 08 10 .08 .06 .16 .14 .14 .14 .16 .18 .20 .25 .33 .35 .33 .35 .35 .35 .35 .35 .35 .3	.00 08 08 .00 .02 .06 .04 .02 .06 .04 .12 .12 .12 .12 .12 .12 .12 .12 .12 .25 .25 .25 .20 .22 .22 .22 .22 .22 .22 .22	.00 .02 .08 .12 .14 .14 .20 .22 .25 .29 .29 .29 .31 .31 .39 .35 .37 .39 .35 .37 .39 .35 .37 .39 .35 .37 .39 .35 .37 .37 .37	.00 .06 .08 .12 .12 .12 .12 .12 .12 .12 .12 .12 .12	.00 .00 .02 .10 .10 .10 .14 .14 .14 .14 .14 .20 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25	.00 .04 .04 .12 .12 .12 .14 .12 .25 .25 .25 .25 .25 .25 .25 .25 .31 .35 .33 .33 .33 .33 .33 .33 .33 .33 .33	.00 .01 .00 .01 .11 .11 .11 .11
11/18/88 11/23/88 12/ 5/88	1053722 1088201 1125385	.31 .33 .35 .33	.51 .49 .45 .49	.31 .35 .37 .33	.22 .20 .20 .22	.39 .37 .39 .35	.35 .33 .33 .35	.31 .29 .29 .29	.31 .31 .31 .33	.34 .33 .34 .34
		•••••								

•

•

.

.

Table 42. Lane 2, section 1 rutting history.

Date		Slope Variance 0.000001	Avg Rut Depth in	Craking and Patching sq ft/1000 sq ft	PSI
4/28/88	0	8.59	.00	.0	3.15
5/ 4/88	32780	7.14	.00	.0	3.15
5/ 9/88	51039	7.03	.00	.0	3.30
6/ 8/88	137714	6.10	. 10	.0	3.40
6/13/88	1683?7	5.80	.11	.0	3.44
6/17/88	1904 i 9	6.10	. 12	.0	3.40
6/23/88	223427	7.76	.16	.0	3.23
6/30/88	255891	8.12	.17	.0	3.20
7/ 7/88	288022	8.53	.18	.0	3.16
7/14/88	316082	9.20	.20	.0	3.10
7/21/88	339821	11.46	.22	.0	2.94
7/27/88 8/ 3/88	377470	20.52	.24	.0	2.48
8/10/88	425977	25.25	.29	.0	2.32
8/17/88	474652 519440	25.90 25.55	.29	.0	2.30
8/24/88	566618	25.55	.32 .34	.0	2.31
8/31/88	623192	28.08	.34	.0	2.27
9/ 7/88	663651	27.94	.35	1.0 1.0	2.23 2.24
9/15/88	709640	27.15	.34	1.0	2.24
9/21/88	749838	29.50	.34	1.0	2.19
9/28/88	770517	25.42	.34	1.0	2.31
10/ 5/88	820148	28.56	.34	2.0	2.22
10/12/88	849598	30.61	.34	2.0	2.17
10/20/88	896601	27.71	.34	2.0	2.25
10/26/88	934859	33.70	.35	2.0	2.09
11/ 3/88	976131	35.39	.34	2.0	2.05
11/18/88	1061098	42.54	.34	22.0	1.90
11/23/88	1091880	53.46	.34	30.0	1.71
12/ 5/88	1125385	61.55	.34	36.0	1.60
				•••••	

Table 43. Lane 2, section 1 PSI history.

Table 44. Lane 2, section 1 NDT data.

						Ua	ta of 	īest S	ection	Cente	rline							Data	from O	ut of	Wheelp	ath			
				Pymt	Avg			Surfac	e Defl	ection	, mils				Pvmt	Ava		Su	rface	Deflec	tion,	nils			
		No. of		Surf	Pvmt Temp	Load		Radia	l Offs	et, in				Ē	Surf	Pvmt	المحما		Radial	Offse	t, in				·
		Passes	Sta	F	F	lbs		8.30	15.40	20.10	31.90	50.0	SN	E. ksi	Temp F	F	Load Ibs	.00	8.30	15.40	20.10	31.90	50.0	SN	E, ks
1	4/88	0	21 25	82 79	86 86			14.10					4.32									•••••			
			28	81	86			13.10 13.67				3.50	4.50 4.42												
			29	. 81	86	9097	16.50	13.60	11.10	9.23	6.10	3.40	4.36		81	84	9166	18.47	15.37	12.53	10.43	7.00	3.83	4.16	14.
			33 36	81 81	86 86			13.00 13.07			5.67 5.57	3.30	4.46 4.40												
			37	79	86			12.60				3.10	4.48	-											
			38	82	86			12.57			5.50	3.10	4.62												
			41 42	81 84	86 86			12.93 12.97		8.43 8.47	5.50 5.47	3.03 3.00	4.38		79	83	9235	17.97	14.83	12.10	9.93	6.43	3.33	4.22	14.
			45	80	86	9097	15.43	12.67	9.80	8.20	5.17		4.50												
			48	83	86	9235	16.70	13.13	10.17	8.07	4.93	2.47	4.38	15.3											
/ 2	2/88	91347	21 25	60 61				18.73 18.80				5.20 5.00	4.04												
			28	61	73	10745	24.07	21.10	17.97	15.03	10.30	5.53	3.94												
			29 33	61 59	73	11020	25.50	21.77	18.73	15.53	10.67	5.70	3.88		68	71	11398	13.10	11.40	9.87	8.40	5.90	3.40	5.46	20
			36	60				20.07 21.30				4.97 5.17	4.06												
			37	61	75	11329	23.60	20.03	17.30	14.10	9.40	5.00	4.08	14.0											
			38 41	63 64				19.63 20.10				4.93	4.16		65	71	10777	1/ 07	12 00	10.07	0 77	6.50	7 67		
			42	63	77	11363	23.70	20.17	16.70	13.97	9.30	4.80	4.08		60	41	(0333	14,00	12.90	10.93	9.33	0.30	3.51	4.90	17.
			45 48	65							8.87		4.04												
			40	66	78	11220	25.05	21.27	17.37	13.95	8.70	4.07	3.96	13.5											
/ 7	/88 2	282869	21 25	100	106			21.90				3.60	3.34												
			25 28	101 101				24.10 23.23			7.43	3.63	3.28												
			29	101	105	8994	30.17	22.83	17.43	12.83	7.27	3.67	3.28	10.5	93	91	10127	20.33	15.93	12.67	10.40	6.90	4.00	4.16	14
			33 36	101 103	105 106			23.33			6.93 6.60	3.50 3.47	3.34 3.36												
			37	102	106	9269	29.00	21.60	15.87	12.00	6.67	3.43	3.38												
		۰.	38 41	103 104				21.87			6.47	3.43 3.27	3.32		00	04	0707	10 17	1/ 00	/7	0 77	E 00			• /
			41	104				22.97			6.90	3.37	3.34 [·] 3.34 [·]		99	96	A202	17.17	14.80	11.47	7.33	5.90	3.55	4.10	14.
			45 48	104 104	109		33.07	23.87	18.03	12.53	6.57	2.97	3.18 3.10	10.1						•					

115

.

Table 44. Lane 2, section 1 NDT data (continued).

.

.

					Dai	ta of	Test S	ection	Cente	rline				• • • • •			Data	From	Out	of W	heelp	ash			
			Dumt	Avg			Surfac	e Defl	ection	, mils				Pvmt			S	urfac	e Det	lect	ion, i	nils			
	No. of		Surf	Pvmt Temp	المعط		Radia	l Offs	et, in				-	Su: f	Pvst			Radi	al Of	fset	, in				
	Passes	Sta	•	remp F	Load lbs		8.30	15.40	20.10	31.90	50.0	SN	E, ksi	îe∋p F	i emp F	Load lbs		0 8.	30 15	.40	20.10	31.90	50.0	SN	E, ksi
8/ 2/88	412535	21	95	96	9372	36.70	29.00	21.50	16.87	9.43	4.37	3.06					* = 0 3 * 1						*****		
		25 28	101 98	96 97	9235	35.17	28.63	21.87	17.13	9.57 8.37	4.13														
		29	97	98						8.97				95	88	9612	28.13	5 23.	30 18		15.47	9.73	4.93	3.48	11.4
		33	98	98	8994	33.50	25.93	19.73	14.40	7.60	3.70	3.12										/1.3	/3	5.40	
		36	95	99						7.47	3.70	3.14													
		37 38	98 97	99 100			25.13			7.43	3.63 3.50	3.14 3.18													
		41	99	100			23.73				3.37	3.22		96	90	10677	28.77	7 23.3	27 18	.50	15.00	9.40	4.63	3.62	12 (
		42	100	102	9235	31.20	23.80	17.13	13.30	7.17												1140	7.03	J.UL	
		45	99	102						6.63	3.00														
		48	100	102	A202	33.57	24.50	18.57	12.55	6.17	2.63	3.18	10.1												
9/19/88	726648	21	88	77	10196	27.20	21.87	18,67	14.23	9.07	4.80	3.64	12.1												
		25	87	78	9990	27.43	22.60	17.67	14.73	8.83	4.23	3.60													
		28	89	78	10196	30.53	23.37	19.57	14.13	8.57	4.30	3.44				447/7						o 7 0			
		29 33	88 89	70	10430	26.83	22.03	17.97	14.00	8.97 8.43	4.43	3.58 3.76		84	73	11202	22.3) 19.:	57 10	.37	14.05	9.70	5.50	4.20	14.5
		36	88	80	10299	27.87	22.53	18.47	13.97	8.47	4.20	3.62													
		37	89	80	10677	28.00	22.30	18.00	14.03		4.10	3.66													
		38 41	89 89	81 82	10951	27.03	22.27	17.87	14.03	8.20 8.33	4.07	3.76 3.58		87	74	109/9	20 50	47 6	.7 4/	E7 -	13 /7	0 / 7	1 17	4.28	4/ 0
		42	89	85	10780	28.63	23.03	17.50	14.23		3.97			07	14	10040	20.30		27 14		12.47	0.47	4.43	4.20	14.0
		45	91	85	11020	28.33	22.77	17.57	13.53	7.50	3.13														
		48	89	85	10866	29.80	23.60	18.10	13.25	7.00	2.90	3.60	11.9												
12/ 7/88	1.13e6	21	44	41	8857	10.93	8.90	9.27	6.60	4.87	3.13	5.26	19.1												
		25	45	41			7.23		5.83	4.00	2.60	5.30	19.3												
		28	45	42			12.57			4.63	2.80	3.84			10					~~	~ ~ ~	7			
		29 33	46 46	42 42		8.03	11.47	6.03	7.30	5.20 3.80	3.10 2.40	4.20 6.16		20	49	9100	12.0/	11.2	10	.37	Y. 13	7.00	4.30	4.98	17.9
		36	46	42	8891	8.27		5.73	5.13	3.73	2.40	6.06													
		37	45	42	9406	8.03	6.90		5.20	3.77	2.40	6.32													
		38	49	42	9338	8.13	7.20	5.93	5.23	3.73	2.40	6.26		57	/0	0500	10 50	~ 7				E 00	7 40	5 67	70.7
		41	49 49	47: 44		8.93	7.40 8.63	6.07 7.30	5.27 6.27	3.80 4.60	2.40	5.86		57	49	9509	10.70	y./(ö.	0/ /	.80	2.90	2.00	2.22	20.2
		45	50	45			8.23			4.60	2.23	5.84													
		48	52	46	9956	13.90	12.87	9.43	6.33	4.63	2.70	4.96	17.8												

APPENDIX G. LANE 2, SECTION 2 DATA

Table 45. Lane 2, section 2 loading and environmental history.

	9.4	11.6	14.1	16.4	19.0	22 5	Total	Cumm	Avg Pvmt	Min Air Temp	Max Air	Total
Date	kips	kips	kips	kips	kips	kips		Passes	Temp F	F	remp F	Precip in
6/18/87		448		•••••			448	448		 61		
6/24/87		7319					7319	7767	89.8	63	91	.0 .6
6/25/87 6/26/87		3779 3092					3779		81.6	69	93	.0
6/27/87		2072					3092 0		80.2 81.5	69 68	87 91	.0 .6
6/28/87 6/29/87	120		(22				0	14638	81.7	72	86	.0
6/30/87	420		420		420		1260 0	15898 15898	79.0	63	84	.0
7/ 1/87							ŏ		81.2	57 66	89 82	.0 .0
7/ 2/87 7/ 3/87							0			63	85	.0
7/ 4/87							0			51 53	81 88	.0 1.0
7/ 5/87							0	15898		68	93	.0
7/ 6/87 7/ 7/87							0	15898		65	92	.0
7/ 8/87	50		402		505		957	15898 16855	85.2 87.0	71 70	88 90	.0 .0
7/ 9/87 7/10/87					1545		1545	18400	88.7	72	86	.0
7/11/87					5126		0 5126	18400 23526	83.7	68	86	.0
7/12/87					8601		8601	32127	84.4 80.1	-58 -73	83 92	.4 .0
7/13/87 7/14/87	258						258	32385	74.9	71	96	.0
7/15/87					63		0 63	32385 32448	83.3	74	93	.0
7/16/87					2232		2232	34680	82.7	74 70	92 94	.0 .0
7/17/87 7/18/87							0	34680	77.3	68	94	.0
7/19/87							0	34680 34680		66 63	92 86	.4
7/20/87					2612		2612	37292	98.5	53	78	.0 .2
7/21/87 7/22/87							0	37292		60	80	.0
7/23/87							ŏ	37292 37292	93.8	57 63	85 91	.0 .0
7/24/87 7/25/87					1549		1549	38841	94.2	65	92	.0
7/26/87							0	38841 38841	89.7 87.9	67 77	95	.0
7/27/87					5305		5305	44146	87.0	71	98 96	.0 .0
7/28/87 7/29/87					7096		7096	51242	86.3	70	96	.0
7/30/87					2444 580		2444 580	53686 54266	84.5 88.3	74 72	97 97	.0
7/31/87							0	54266	83.8	70	93	.0 .0
8/ 1/87 8/ 2/87							0	54266		68	92	.0
8/ 3/87					4336		0 4336	54266 58602	95.5	63 58	88 88	.0 .0
8/ 4/87 8/ 5/87					5804		5804	64406	91.9	62	93	.0
8/ 6/87					6296 815		6296 815	70702 71517	85.9	67	93	.0
8/ 7/87					990		990	72507	87.5	69 70	87 90	.0 .0
8/ 8/87 8/ 9/87							0	72507		74	97	.0
8/10/87					258		0 258	72507 72765		71 70	97	.0
8/11/87					7387		7387			69	89 87	.0 .1
8/12/87 8/13/87					4902 9537		4902	85054		65	86	.0
8/14/87					6646		9537 6646	94591 101237		70 73	93 95	.0
8/15/87					9095		9095	110332		67	93	.0 .0
8/16/87 8/17/87					6507 6226			116839		58	87	.0
8/18/87					7017			123065 130082	95.2	56 60	87 86	.0 .0
8/19/87					3270		3270	133352	82.6	57	87	.0
8/20/87 8/21/87					5085 8717		5085	138437 147154	83.4	63	90	.0
8/22/87					968		968	147154	84.3 79.5	70 70	89 98	.0 .0
							. – –				20	

117

Table 45. Lane 2, section 2 loading and environmental history (continued).

. --

									Avg	Min	Max	_ .
	9.4	11.6	14.1	16.4	19.0	22.5	Total	Cumm	Pvmt Temp	Air Temp	Air	Total Precip
Date	kips	kips	kips	kips	kips	kips		Passes	F	F	F	in
8/23/87	•••••	•••••	•••••			•••••	•••••	148122	84.0	 40	 05	
8/24/87					8343			156465	78.8	68 66	95 86	.0 .0
8/25/87					8631			165096	73.9	59	89	.0
8/26/87					8055			173151	74.3	52	90	.0
8/27/87 8/28/87					5944			179095	81.3	71	77	.2
8/29/87					6211			185306 185306	77.9	58 46	81	.0
8/30/87								185306		40	80 74	0. 0.
8/31/87					8502		8502	193808	80.9	61	78	.0
9/ 1/87 9/ 2/87					7004			200812	82.4	63	100	.0
9/ 3/87					8005 7820			208817 216637	79.7 79.7	70	83	.2
9/ 4/87					3747			220384	78.1	55 49	82 81	.0 .0
9/ 5/87					3859			224243	71.8	60	82	.1
9/ 6/87					8805			233048	70.7	51	81	.0
9/ 7/87 9/ 8/87					1125 5653			234173 239826	74.9	45	85	.0
9/ 9/87					7890			247716	73.3 78.3	55 53	80 80	.0
9/10/87					1539			249255	76.5	54	72	.0 .0
9/11/87					8639		8639	257894	82.0	63	71	.0
9/12/87 9/13/87					3398			261292	76.3	67	81	.0
9/14/87					827 8207			262119 270326	75.7 75.9	69	74	1.3
9/15/87					7334			277660	82.8	66 67	86 85	2.2 .0
9/16/87					8909		8909	286569	80.0	64	85	.0
9/17/87					7563			294132	78.1	67	83	.0
9/18/87 9/19/87					7587 8921			301719 310640	77.1	66	83	.0
9/20/87					4207			314847	71.4 67.0	63 58	86 86	4.0
9/21/87					5434			320281	69.3	61	86	.0 .0
9/22/87					7402			327683	77.2	66	87	.0
9/23/87 9/24/87					7139			334822	72.1	66	85	.8
9/25/87					7746 8699			342568 351267	73.4 75.8	61	71	.0
9/26/87					7308			358575	73.4	61 59	65 78	.0 .4
9/27/87					0			358575	76.8	55	77	.0
9/28/87					8316			366891	77.5	51	74	.0
9/29/87 9/30/87					7452 685			374343 375028	75.6	51	77	.0
10/ 1/87					4925			379953	72.8 74.8	47 41	69 75	.0 .0
10/ 2/87					1469			381422	69.6	51	81	.0
10/ 3/87					0			381422	59.0	51	83	.0
10/ 4/87 10/ 5/87					3765			385187	66.1	56	81	.0
10/ 6/87					8065 3910			393252 397162	67.5 70.1	55 43	75 65	.2
10/ 7/87					8226			405388	65.5	40	73	.0 .0
10/ 8/87					8195		8195	413583	62.8	44	62	.ŏ
10/ 9/87 10/10/87					8346			421929	65.3	40	59	.0
10/11/87					8837 0			430766 430766	65.1	35	69	.7
10/12/87					7167			437933	63.8 62.5	41 41	71 64	.0 .0
10/13/87					2956			440889	65.8	34	58	.0
10/14/87					8183			449072	63.3	29	63	.0
10/15/87 10/16/87					1823			450895	54.2	47	75	.0
10/17/87					0 0			450895 450895	55.3	47 33	61 55	.0
10/18/87					0			450895		30	55 58	.0 .0
10/19/87					2		2	450897	77.5	29	62	.0
10/20/87 10/21/87					15			450912		28	67	.0
10/22/87					0 258			450912	47 g	32	75	.0
10/23/87					0			451170 451170	67.8	35 37	70 68	.0
10/24/87					0			451170		37	72	.0 .0
10/25/87					0		0	451170		46	73	.0
10/26/87					230		230	451400	71.7	36	59	.1

118

Table 45. Lane 2, section 2 loading and environmental history (continued).

.

•

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
10/27/87					2801		2801	454201	54.8	33		
10/28/87					8468			462669	58.0	33	68	.0
10/29/87					1905			464574	57.1	36	72	.0
10/30/87					8050		8050	472624	58.4	30	58	.0
10/31/87 11/ 1/87					7995			480619	63.5	26	60	.0
11/ 2/87					0			480619	63.7	29	49	.0
11/ 3/87					8422 7015			489041	58.5	30	58	1.4
11/ 4/87					8880			496056		27	57	.0
11/ 5/87					2161			504936 507097		30	66	.0
11/ 6/87					4668			511765		39 36	69	.0
11/ 7/87					0			511765		39	71 70	.0
11/ 8/87					Ō			511765		41	75	.0 .0
11/ 9/87					8168			519933		47	80	.0
11/10/87					6618			526551		45	67	.0
11/11/87					0			526551		27	51	.0
11/12/87					5613			532164	55.1	28	63	.0
11/13/87 11/14/87					6529			538693		42	77	.0
11/15/87					0			538693		56	70	.0
11/16/87					0			538693		31	57	.5
11/17/87					5757 9019			544450		29	34	1.1
11/18/87					2695			553469 556164		27	49	.2
11/19/87					6550			562714		26	59	.0
11/20/87					7013			569727		28 32	68	.0
11/21/87					Ō			569727		32	62 68	.0
11/22/87					Ō			569727		53	71	.0 .4
11/23/87					5537			575264		47	68	.0
11/24/87					2878		2878	578142		34	54	.0
11/25/87					0		0	578142		29	50	.0
11/26/87					0			578142		24	30	.0
11/27/87 11/28/87					0			578142		21	41	.0
11/29/87					0			578142		20	57	.0
11/30/87					0			578142		46	63	.0
					0		0	578142		39	66	.0
												•••••

	No 6			1	Lineal	Crack	ing, i	r		
Date	No. of- Passes	62	66	70	74	73	82	86	90	Av
6/17/87	0	0	0	0	 O	0	0	0	0	
9/10/87	248200	Ō	Ō	Ō	ō	ō	ŏ	ō	26	
9/21/87	314847	21	37	99	79	154	87	46	246	9
9/30/87	375023	21	39	112	79	207	116	56	318	11
10/12/87	430766	21	39	119	79	288	132	74	460	15
10/29/87	462920	39	46	149	88	456	251	108	608	21
11/ 9/87	511765	40	46	192	93	540	332	163	637	25
11/16/87	538963	60	56	262	148	809	531	240	805	36
11/25/87	578142	122	70	499	270	1061	918	495	1130	
11/23/01	210142	122	70	477	210	1031	710	473	1120	21
									000 sq.	57 ft
Date	No. of-	62								ft
	No. of-		Crac	king a 70	nd Pat	ching, 78	sq. f 82	t / 10 86	000 sq. 90	ft
Date	No. of- Passes	62	Crac 66	king a	nd Pat	ching, 78 0	sq. f 82 0	t / 10 86 0	000 sq. 90 0	ft
Date 6/17/87	No. of- Passes O	62 0	Crac 66 0	king a 70 0	nd Pat 74 0	ching, 78 0 0	sq. f 82 0 0	t / 10 86 0	000 sq. 90 0	ft
Date 6/17/87 9/10/87 9/21/87 9/30/87	No. of- Passes 0 248200	62 0 0	Crac 66 0	king a 70 0	nd Pat 74 0	ching, 78 0 0 2	sq. f 82 0	t / 10 86 0 0	000 sq. 90 0 2	ft
Date 6/17/87 9/10/87 9/21/87	No. of- Passes 0 248200 314847	62 0 0 0	Crac 66 0	king a 70 0	nd Pat 74 0	ching, 78 0 0	sq. f 82 0 0	t / 10 86 0	900 sq. 90 0 2 2	ft
Date 6/17/87 9/10/87 9/21/87 9/30/87 10/12/87 10/29/87	No. of- Passes 0 248200 314847 375023 430766 462920	62 0 0 0 0 0 0 0 0	Crac 66 0	king a 70 0 1 1 2 4	nd Pat 74 0 1 1 1 2	ching, 78 0 2 2	sq. f 82 0 0	t / 10 86 0 0 0 1	000 sq. 90 0 2	
Date 6/17/87 9/10/87 9/21/87 9/30/87 10/12/87 10/29/87 11/ 9/87	No. of Passes 0 248200 314847 375023 430766 462920 511765	62 0 0 0 0 0 0	Crac 66 0	king a 70 0 1 1 2	nd Pat 74 0 1 1 1 2 2	ching, 78 0 2 2 4	sq. f 82 0 0 0 0 1	t / 10 86 0 0	90 sq. 90 0 2 2 28	ft Av
Date 6/17/87 9/10/87 9/21/87 9/30/87 10/12/87 10/29/87	No. of- Passes 0 248200 314847 375023 430766 462920	62 0 0 0 0 0 0 0 0	Crac 66 0	king a 70 0 1 1 2 4	nd Pat 74 0 1 1 1 2	ching, 78 0 2 2 4 211	sq. f 82 0 0 0 0 1 67	t / 10 86 0 0 0 0 1 2	000 sq. 90 0 2 2 28 89	ft Av

Table 46. Lane 2, section 2 cracking history.

Table 47. Lane 2, section 2 rutting history.

	No. of				Rut	Depth	, In			
Date	Passes	62	66	70	74	78	82	86	90	Avg
6/16/87	0	.00	.00	.00	.00	.00	.00	.00	.00	.00
7/21/87	37292	.08	.23	.25	.21	.23	.22	.23	.36	.23
8/18/87	130082	.16	.33	.34	.30	.34	.44	.40	.62	.37
10/15/87	450895	.39	.50	.68	.68	.80	.68	.50	.78	.63
1/30/87	578142	.62	.74	.79	.84	1.16	1.18	.78	1.02	.89

Table 48. Lane 2, section 2 PSI history.

PSI	Craking and Patching sq ft/1000 sq ft	Avg Rut Depth in	Slope Variance 0.000001		Date
2.85		.00	12.84	0	6/16/87
2.81	.0	.23	12.24	37292	7/21/87
2.51	.0	.57	11.10	130082	8/18/87
1.25	30.0	.63	45.31	450895	10/15/87
.10	250.0	.89	82.89	578142	11/30/87

Table 49. Lane 2, section 2 NDT data.

					Da	ta of	Test S	ection	Cente	rline							Data	From C	ut of	Wheelp	ath			
			Pvmt	Avg			Surfac	e Defi	ection	, mits				Pvmt			Su	rface	Deflec	tion, r	nils			
No.	of		Surf	Pvmt	Load		Radia	l Offs	et, in		•		-	Surf	Pvmt			Radial	Offse	t, in				
Date Pass		Sta	F	F	lbs		8.30	15.40	20.10	31.90	50.0	SN	E, ksi	Temp F	Temp F	Load lbs		8.30	15.40	20.10	31.90	50.0	SN	E. ksi
7/30/87 536	586	63 68 73 75 77 79 81 83 88	90 91 91 91 93 88 91 91		8239 8239 8239 8239 8239 8239 8239 8239	21.90 21.30 22.00 23.30 23.20 22.50 21.50	16.90 17.20 17.80 18.50 18.30 17.50 17.00	12.60 24.20 13.40 13.80 14.10 13.50 13.00	8.60 9.30 10.00 10.20 10.40 9.80 9.60 9.70	4.70 5.30 5.40 5.30 5.30 5.10 4.90	2.00 2.20 2.20 2.10 2.00 2.00 1.90	3.62 3.66 3.60 3.52 3.52 3.58 3.64	12.0 12.2 11.9 11.6 11.6 11.8 12.1	96 96 97 97 96 99 100 99 100		8033 8033 8033 8033 8033 8033 8033 8239	21.40 20.30 20.30 20.20 20.20 19.80 19.50	15.90 15.20 15.10 15.30 15.50 15.10 15.10	11.30 11.20 10.70 11.30 10.90 11.50 11.00	7.90 8.40 8.50 8.80 8.90 8.90 8.80 8.90 8.80 8.90 9.40	4.50 4.80 5.00 5.00 4.90 4.90 4.90	2.10 2.30 2.20 2.20 2.20 2.20 2.20	3.62 3.70 3.70 3.70 3.72 3.74 3.82	12.0 12.3 12.3 12.3 12.4 12.5 12.8
8/27/87 1731	51	63 68 73 75 77 79 81 83 88	92 93 92 97 94 93 93 98 98		7827 7827 8548 9445 8651 8033 8239 8239	17.90 20.10 22.30 23.40 25.60 25.40 22.80 20.90	14.00 15.70 17.80 18.90 20.20 19.70 18.20 16.90	11.70 12.80 15.00 15.80 16.60 16.20 15.00 14.10	8.10 8.70 10.60 11.10 11.00 10.90 10.20 9.70 9.50	4.30 4.60 5.80 5.90 5.60 5.60 5.20 5.10	1.80 1.90 2.40 2.30 2.40 2.10 2.10	3.88 3.68 3.66 3.74 3.44 3.34 3.56	13.1 12.2 12.2 12.5 11.2 10.8 11.7 12.3 13.0	99		8342 8857 8033 7827 8445 8445 8651 8239	16.50 18.10 18.40 17.80 17.90 18.30 18.00 17.90	12.70 13.90 13.80 13.80 14.30 14.50 14.10 14.40	10.50 11.30 11.40 11.60 12.00 12.20 12.00 12.20	7.20 7.70 8.00 8.30 8.60 8.60 8.60 8.60 8.90 9.70	4.30 4.30 4.70 4.90 5.00 5.00 5.00 5.00 5.20	2.10 2.40 2.30 2.40 2.20 2.40 2.40 2.30	4.16 4.10 3.88 3.90 4.02 3.98 4.06 3.98	14.3 14.1 13.1 13.2 13.7 13.6 13.9 13.6
9/30/87 37434		63 68 75 75 77 81 83 88	70 72 70 71 72 72 72 71 71		9063 9269 9269 9063 8857 8857 8857	23.50 23.10 23.90 26.10 30.90 29.10 25.10	19.50 18.50 19.70 22.00 23.90 22.20 20.00	16.10 15.70 16.90 18.30 19.20 18.40 17.60	10.40 11.10 11.60 12.50 11.70 12.60 12.50 13.00 12.60	6.20 6.80 7.00 5.90 6.20 6.30 6.30	3.10 3.20 2.70 2.70 2.90 2.80	3.68 3.48 3.20	13.6 12.2 12.4 12.2 11.4 10.2 10.5 11.6 11.6	76 76 77 77 77 76 76 76		8445 8342 8445 8651 8445 8445 8445	17.30 16.90 16.70 17.10 16.50 15.70 15.60	14.60 14.30 14.30 14.30 14.00 13.50 13.30	12.80 12.60 12.60 12.80 12.40 12.00 12.00	9.40 9.80 9.80 9.80 10.00 9.70 9.50 9.50 10.00	5.60 5.90 6.00 6.10 5.90 5.80 5.90	2.80 3.10 3.10 3.10 3.00 2.90 3.00	4.10 4.12 4.16 4.16 4.18 4.28 4.28 4.30	14.1 14.2 14.3 14.3 14.4 14.8 14.8 14.9
10/29/87 46266		63 68 73 75 77 81 83 88	57 57 58 57 57 57 59 57 58		8754 8651 8239 7930 6900 7930 7930 7930	17.10 16.50 18.30 22.70 1.60 25.60 21.20	13.50 13.00 14.80 14.70 29.40 19.40 15.70	10.90 11.10 11.80 12.30 21.10 15.20 13.40	8.30	4.60 5.20 5.10 4.40 4.60 5.40 5.40	2.10 2.60 2.40 2.20 2.10 2.50 2.40	4.18 4.24 3.94 3.50 2.80 3.30 3.60	16.7 14.4 14.7 13.4 11.5 8.4 10.6 11.9 12.9	59 60 60 60 60 60 58 60		8033 8445 7930 8445 7827 7724 7724	9.70 10.90 11.10 11.50 11.20 10.80 10.50	8.50 9.50 9.70 9.90 9.80 9.50 9.30	7.60 8.60 8.80 9.10 8.90 8.70 8.50	6.30 6.30 7.20 7.40 7.50 7.40 7.20 7.10 7.20	4.30 5.00 5.20 5.30 8.10 5.00 5.00	2.20 2.60 2.60 2.70 2.60 2.60 2.60	5.30 5.12 4.92 4.98 4.86 4.92 4.92	19.3 18.9 17.6 17.9 17.4 17.6 17.9

Table 49. Lane 2, section 2 NDT data (continued).

				Dat	ta of 1	est S	ection	Cente	rline							Data	From Ou	it of I	heelp	ath			
		Pvmt	Ava		5	Surfac	e Defl	ection	, mils				Pvmt	Δvn		Su	rface [eflec	tion, r	nils			
No. of		Surf		Load		Radia	l Offs	et, in				Ε.	Surf	Pvmt Temp	Load		Radial	Offse	t, in				E
Date Passes	Sta	•	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ks i	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ks
1/30/87 578142	63 68 73 75 77 79 81 83 88	50 46 48 52 60 53 49 53 52		7930 7724 7621 6282 6076 6282 7106		15.70 19.60 19.10 36.70 30.80 48.00 32.10	12.90 12.00 16.30 22.00 22.60 21.30 25.80	7.90 9.10 8.00 9.10 8.00 8.20 8.60	5.80 5.00 4.30	2.30 2.50 2.30 2.00 1.50 1.90 2.20	2.22	11.8 11.0 11.4 6.8 5.3 5.9 6.1	54 50 55 49 52 66 51 53 55		8136 8960 8136 7930 7724 7812 7827	11.10 12.40 11.40 11.90 11.90 11.60 10.90	9.20 9.80 10.90 10.10 10.60 10.70 10.40 9.80 10.00	9.00 9.80 9.30 9.80 9.80 9.50 9.10	7.40 8.10 7.80 8.20 8.30 8.00 7.60	5.10 5.60 5.60 5.80 5.80	2.40 2.90 2.90 3.00 3.00 2.90 2.80	4.98 4.94 4.92 4.76 4.70 4.78 4.94	17. 17. 17. 16. 16. 16. 17.

•

APPENDIX H. LANE 2, SECTION 3 DATA

Table 50. Lane 2, section 3 loading and environmental history.

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19 kips	22.5 kips	Total	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
											• • • • •	
1/ 8/87 1/ 9/87		240 198					240 198	240 438		29 28	43 45	.0
1/10/87		170					170	438		33	42	.0 .1
1/11/87		Ó					Ó	438		30	43	.o
1/12/87 1/13/87		2444 3110					2444 3110	2882 5992		28 27	45 49	.0
1/14/87		3393					3393	9385		24	66	.0 .0
1/15/87		3568					3568	12953		45	60	.1
1/16/87 1/17/87		2365 0					2365 0	15318 15318		37 27	50 38	.0
1/18/87		ŏ					ŏ	15318		31	34	.0 .4
1/19/87		0					Ő	15318		33	42	1.4
1/20/87 1/21/87		3659 3742					3659 3742	18977 22719		34 31	42	.0
1/22/87		0					5/42	22719		26	40 32	.0 2.3
1/23/87		139					139	22858		5	31	.0
1/24/87 1/25/87		0					0 0	22858		-2	25	. <u>o</u>
1/26/87		45					0 45	22858 22903		-5 3	18 26	.7 .9
1/27/87		2464					2464	25367		-9	24	.0
1/28/87	310	2883	205		282		2883	28250		-17	35	.0
1/29/87 1/30/87	510	290	295		761		1177 761	29427 30188		-1 28	41 44	.4 .2
1/31/87					0		Ó	30188		29	40	.0
2/ 1/87					0		0	30188		18	40	
2/ 2/87 2/ 3/87					3167 3632		3167 3632	33355 36987		27 20	58 50	
2/ 4/87					286		286	37273		34	45	
2/ 5/87					3676 1932		3676	40949		25	43	
2/ 6/87 2/ 7/87					1925		1932 0	42881 42881		18 23	52 51	
2/ 8/87					3400		3400	46281		24	53	
2/ 9/87					9040		9040	55321		23	33	-
2/10/87 2/11/87					8603 8774		8603 8774	63924 72698		20 20	48 47	
2/12/87					4777		4777	77475		25	43	
2/13/87					3465		3465	80940		28	44	
2/14/87 2/15/87					0 3486		0 3486	80940 84426		19 14	39 29	
2/16/87					9148		9148	93574		11	28	
2/17/87					7300			100874		28	37	.0
2/18/87 2/19/87					6748 7832			107622		20 14	44 45	-
2/20/87					4732			120186		15	45	
2/21/87					0			120186		23	48	.0
2/22/87 2/23/87					0			120186 120186		19 32	48 46	
2/24/87					ŏ			120186		28	45	
2/25/87					800			120986		16	43	.0
2/26/87 2/27/87					3406 2035			124392		16	42	
2/28/87					2035			126427 126427		28 31	41 44	
3/ 1/87					0		0	126427		43	69	.3
3/ 2/87 3/ 3/87					5599 3834			132026		37	53	
3/ 3/87					3987			135860 139847		31 23	55 37	
3/ 5/87					4282		4282	144129		16	43	
3/ 6/87					2209			146338		21	60	
3/ 7/87 3/ 8/87					0		0	146338 146338		31 30	75 76	
3/ 9/87					558			146896		28	66	

123

Table 50. Lane 2, section 3 loading and environmental history (continued).

.

	9.4	11.6	14.1	16.4	19	22.5	Total	Cumm	Avg Pvmt Temp	Min Air Temp	Max Air Temp	Total Precip
Date	kips	kips	kips	kips	kips	kips	Pass	Passes	F	F	F	in
3/10/87			******		0		•••••	146896		19		
3/11/87					ŏ			146896		19	40	0. 0.
3/12/87					0			146896		22	47	.0
3/13/87					• 0			146896		25	46	.0
3/14/87 3/15/87					0			146896		19	48	.0
3/16/87					ŏ			146896 146896		32 25	42 47	.2 .2
3/17/87					4467			151363		22	54	.0
3/18/87					5590		5590	156953		23	58	.0
3/19/87					4783			161736		28	56	.0
3/20/87 3/21/87					1908 0			163644 163644		24 35	61 53	.0
3/22/87					ŏ			163644		31	57	.0 .0
3/23/87					5567			169211		25	63	.0
3/24/87					8260			177471		28	68	.0
3/25/87 3/26/87					6713 5894			184184 190078		34 47	64	.1
3/27/87					5471			195549		37	71 70	0. 0.
3/28/87					Ó		0	195549		43	65	.4
3/29/87					0			195549		42	75	.0
3/30/87 3/31/87					0 319		_	195549		53	60	.2
4/ 1/87					7166			195868 203034		31 20	63 50	.2
4/ 2/87					5163			208197		33	63	.0 .1
4/ 3/87					8717			216914		32	46	.5
4/ 4/87					5936			222850		36	56	1.5
4/ 5/87 4/ 6/87					5930 7442			228780 236222		32	42	.1
4/ 7/87					2328			238550		32 43	45 57	.4 .0
4/ 8/87					6846			245396		39	63	.0
4/ 9/87					8198			253594		33	61	.0
4/10/87 4/11/87					5812			259406		39	71	.0
4/12/87					5015 2437			264421 266858		41 39	75	.0
4/13/87					0			266858		42	67 62	0. 0.
4/14/87					0		0	266858		37	67	.0
4/15/87					4559			271417		46	53	.2
4/16/87 4/17/87					5348 0			276765 276765		46	50	.8
4/18/87					ŏ			276765		49 54	64 65	.4 .0
4/19/87					ō		-	276765		53	71	.0
4/20/87					0			276765		54	75	.0
4/21/87					184			276949		56	78	.0
4/23/87					2569 4176			279518 283694		50 51	86 61	.0
4/24/87					6791			290485		50	59	.0 .7
4/25/87					5655			296140		39	52	.1
4/26/87					5750			301890		36	65	.0
4/27/87 4/28/87					7551 7823			309441 317264		31	66	.0
4/29/87					7584			324848		37 32	59 77	0. 0.
4/30/87					7182			332030		48	67	.0
5/ 1/87					0		0	332030		36	72	.0
5/ 2/87 5/ 3/87					0		Ő	332030		46	71	. <u>o</u>
5/ 4/87					0 6858			332030 . 338888		51 42	78 53	.4 .7
5/ 5/87					8879			347767		34	65	.6
5/ 6/87					4410		4410	352177		37	75	.0
5/7/87					4271			356448		41	80	.0
5/ 8/87 5/ 9/87					8704 5075			365152 370227		43 37	70	.0
5/10/87					0			370227		57 44	79 87	.0 .0
5/11/87					6662			376889		50	89	.0
5/12/87					8616		8616	385505		62	88	.2
5/13/87					8040		8040	393545		54	67	.0

124

•

Table 50. Lane 2, section 3 loading and environmental history (continued).

Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19 kips	22.5 To kips P		Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
5/14/87 5/15/87					8523 9020			402068 411088		53 53	69 80	.0
5/16/87					0	-		411088		45	73	.4 .0
5/17/87					0		0	411088		47	87	.0
5/18/87 5/19/87					5724	5	5724	416812		53	91	.0
5/20/87					8590	8	590	425402		52	67	.1
5/21/87					8623			434025		49	57	.4
5/22/87					7461 3068			441486		53	71	.0
5/23/87					0	2		444554		53	79	.0
5/24/87					ŏ			444554 444554		65	85	.0
5/25/87					ŏ			444554		64	85	.0
5/26/87					7738	7		452292		60 58	69 68	.0
5/27/87					7148			459440		60	73	.0
5/28/87					8498			467938		62	84	.0 .0
5/29/87					8284			476222		60	92	.0
5/30/87					4136	4	136	480358		64	95	.0
5/31/87					0			480358		67	89	.1
6/ 1/87 6/ 2/87					7692			488050		64	90	.0
6/ 3/87					8164			496214		62	87	.0
6/ 4/87					2968	29	768	499182		65	86	.2
					3480	34	480	502662		60	76	.6
							•		•••••			

Table 51. Lane 2, section 3 cracking history.

	No. of-			L	ineal	Cracki	ng, ir	ì		
Date	Passes	99	103	107	111	115	119	123	127	Avg
1/ 7/87 4/15/87 4/22/87 4/30/87 5/11/87 5/18/87 6/ 2/87 6/ 8/87	0 266858 279518 329156 370234 411088 488285 502662	0 0 0 33 79 112	0 0 0 10 10 50	0 0 0 22 22 115	0 0 0 10 61 121	0 0 0 0 0 44 62	0 0 0 46 154 258	0 0 63 63 225 466 597	0 51 82 392 538 721 935 1051	(10 57 133 221 296
	No. of	c	rackin	g and	Patchi	ng, sq	. ft /	1000	sq. ft	• • •
Date	Passes	99	103	107	111	115	119	123	127	Avg
1/ 7/87 4/15/87 4/22/87 4/30/87 5/11/87 5/18/87 6/ 2/87 6/ 8/87	0 266858 279518 329156 370234 411088 488285 502662	0 0 0 0 23 23		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 1 3	0 0 0 0 0 0 2 17	0 0 0 0 0 280 283	0 0 15 133 162 210 212	0 0 2 17 20 65 67

.

Table 52. Lane 2, section 3 rutting history.

	No. 16				Rut	Depth,	In			
Date	No. of Passes	99	103	107	111	115	119	123	127	Avg
/ 5/87	0	.00	.00	.00	.00	.00	.00	.00	.00	.00
/12/87	77475	.10	.00	.06	.03	.00	.06	.04	.12	.05
/13/87	146896	.10	.02	.08	.03	.08	.11	.12	.12	.08
/21/87	276949	.10	.08	.28	.17	.12	.27	.52	.82	.30
5/18/87	416812	.43	.39	.53	.50	.70	.91	1.14	1.50	.76

Table 53. Lane 2, section 3 PSI history.

PSI	Craking and Patching sq ft/1000 sq ft	Avg Rut Depth in	Slope Variance 0.000001		Date
3.04	.0	.00	10.03	0	1/ 5/87
3.31	.0	.05	6.96	77475	2/12/87
2.97	.0	.08	10.84	146896	3/12/87
2.29	10.0	.30	21.56	276949	4/21/87
1.01	133.0	.76	41.54	416812	5/18/87

2

Table 54. Lane 2, section 3 NDT data.

.

				Dat	a of T	est Se	ection	Center	line							Data F	rom Ou	ut of b	heelpa	oth			
					S	urface	e Defle	ection,	mils							Sur	face [eflect	ion, π	nils			
			Pvmt			Radia	Offs	et, in				-	Pvmt A Surf P	vmt	• • • •		adial	Offset	;, in				-
No. of		•	Temp									Ε,	Temp T	•	Load -								Ε,
Date Passes	s Sta	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ksi	F	F	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ks
/12/87 72698	103	38		12050	12.4	11.3	10.2	9.4	7.2	4.4	5.72	21.1	38		13865	9.4	8.3	7.7	6.9	5.2	3.1	7.08	27.
	105			11432	12.5	11.3	10.4	9.3	7.0	4.3	5.56	20.4	38		11432	13.1	11.9	11.0	9.8	7.5	4.5	5.44	20.
	108			11741	12.0	10.8	10.0	8.9	6.8	4.3	5.74	21.2	37		11638	12.7	11.4	10.7	9.4	7.2	4.4	5.56	20
	110			11638	11.3	10.2	9.6	8.6	6.6	4.2	5.90	21.9	35		11123	12.0	10.9	10.3	9.1	7.0	4.3	5.58	20
	112	38		11432	11.0	11.0	10.0	8.5	6.6	4.2	5.92	22.0	36		11329	11.6	10.6	10.0	8.9	6.8		5.74	
	114	37		11638	10.9	10.9	10.1	8.5	6.6	4.1	6.00	22.3	38		11432	11.3	10.4	9.6	8.8	6.9	4.3	5.84	21
	119	37		11432	12.4	12.4	11.2	9.3	7.2	4.4	5.58	20.5	40		12256	11.9	10.7	10.0	9.0	6.8	4.3	5.90	
	121			11432	12.5	12.5	11.5	9.8	7.5	4.6	5.56	20.4	34		11947	11.6	10.7	9.9	9.1	7.0	4.4	5.90	21
16/87 146890	103	37		11329	12.1	11.1	9.9	9.3	7.0	4.3	5.62	20.6	43		12050			10.6	9.5	7.2		5.66	
-	105 108			11638	12.3	11.2	10.3	9.2	6.9	4.2	5.66	20.8	39		11329	12.8	11.6	10.7	9.6	7.1	4.3	5.64	20
	110 112	37		11741	10.9	9.8	9.4	8.2	6.3	4.0	6.04	22.5	39		11432	12.0	11.0	10.2	9.1	7.0	4.3	5.82	21
	114			11741	11.0	10.1	9.1	8.5	6.6	4.1	6.00	22 3	37		11432	11.3	10.3	9.5	8.7	6.6	4.1	5.92	22
	119			11226	13.0	11.7	10.5	9.6	7.4	4.6	5.60		40		11947	11.9	10.8	10.0	9.0	6.9	4.3	5.86	
	121			11226	13.3	12.3	10.9	10.4	7.9	4.7	5.54		34		11020	11.8	10.8	9.9	9.1	7.0	4.3	5.88	21
18/87 411088	103	89		11844	38.0	32.1	25.4	21.0	12.1	5.1	3.34	10.8	97		11535	37.1	30.9	27.0	20.4	12.0	5.4	3.38	11
	105 108	91		11844	39.8	32.5	25.9	20.7	11.8	5.0	3.28	10.5	98		11432	38.1	31.6	27.4	20.8	12.1	5.4	3.26	10
	110			11844	37.3	30.6	25.4	20.6	12.4	5.6	3.38	10.9	96		11432	37.2	31.2	28.3	20.9	12.6	5.8	3.30	10
	112			11844	36.7	30.7	27.7		13.1	5.8	3.40		98		11638	36.0	30.4	26.6	20.8	12.6	5.7	3.42	
	114			11638	37.3	32.7	28.6	22.7	13.8	5.7			97		11432	35.7	30.4	26.8	20.9	12.6		3.36	
	119			11030	55	32.17	20.0						99		11432	37.8	32.1	28.6	21.8	13.2	5.9	3.28	10
	121												100		11432	37.0	31.6	28.6	21.9	13.1	6.0	3.30	10

.

.

.

APPENDIX I. LANE 2, SECTION 4 DATA

Table 55. Lane 2, section 4 loading and environmental history.

	Date	9.4 kips	11.6 kips	14.1 kips	16.4 kips	19.0 kips	22.5 kips	Total Pass	Cumm Passes	Avg Pvmt Temp F	Min Air Temp F	Max Air Temp F	Total Precip in
1/10/89 433 433 487 32 32 0 1/11/89 321 321 38 35.8 25 50 0 1/13/89 8700 8700 8700 18729 34.7 36 44 5 1/14/89 8701 8771 8770 32.9 18 36 44 5 1/14/89 8701 8701 3771 37.7 36 46 0 0 174789 36.46 6 0 0 174789 28 51 50 8501 8501 8501 8501 360 37.1 26 59 0 0 174789 28 51 51 5777 37.2 18 46 0 0 172789 0 0 63777 32.9 10 0 172789 35.1 25 50 0 172789 9710 9710 31.3 38 50 0 0 172789 1131131141 35.43 38 50 0 0 172789 11311311135.9 31.58							54	54	54				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								433			32		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									808	35.8	25	50	
											36	44	.5
1/15/8900 27700 33.8 32 43 0 $1/17/89$ 8206 8206 4407 34.9 36 46 0 $1/17/89$ 8206 8206 4407 34.9 36 46 0 $1/17/89$ 8206 8206 4407 34.9 28 51 0 $1/19/98$ 9008 9008 59896 37.1 26 59 0 $1/20/89$ 3850 3850 63746 35.8 30 41 0 $1/22/89$ 00 63797 34.5 20 33 0 $1/22/89$ 00 63797 34.5 20 33 0 $1/22/89$ 90109010 81202 34.9 24 41 0 $1/22/89$ 7387 7387 96710 34.3 38 50 0 $1/25/89$ 8121 89223 35.2 30 62 0 $1/26/89$ 7387 7387 96710 34.3 38 50 0 $1/28/89$ 9131 11311 313 135.5 32 30 62 0 $1/30/89$ 8550 8550 12267 35.5 42 60 0 $1/28/89$ 9334 3343 13927 37.8 40 73 0 $2/2/89$ 3342 3324 337.8 40 73 0 $2/3/89$ 4962 4962 146789 32.4											36	40	.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
1/17/89 8206 8206 44407 34.9 28 51 .0 1/18/89 6481 6481 5088 36.2 26 55 .0 1/19/98 9008 9008 59896 37.1 26 55 .0 1/20/89 3850 3850 63764 35.8 30 41 .0 1/21/89 51 51 63797 32.2 18 46 .0 1/22/89 0 0 63797 32.2 18 46 .0 1/25/89 8121 8121 8323 35.2 41 46 .0 1/26/89 7387 7577 704287 36.1 38 50 .0 1/27/89 7577 7577 704287 36.3 38 50 .0 1/28/89 9131 9131 113418 35.6 29 53 .0 1/28/89 929 299 199131 113418 35.6 29 .0 1/30/89 8550 8550 122667							-	-					
1/18/89 6481 5088 36.2 26 55 .0 1/19/98 9008 9008 59866 37.1 26 59 .0 1/20/89 3850 3850 637.6 35.8 30 41 .0 1/22/89 0 0 63797 34.5 20 33 .0 1/22/89 0 0 63797 34.5 20 33 .0 1/22/89 0 0 63797 34.5 20 33 .0 1/22/89 9010 9010 81202 34.9 24 61 .0 1/22/89 9010 9010 81202 34.9 24 61 .0 1/26/89 7387 7387 76710 34.3 38 50 .0 1/27/89 7387 7577 7577 104287 36.1 38 58 .1 1/27/89 299 19131 113418 35.6 29 37 .0 2/1/3089 4952 8550 825267 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
1/19/98 9008 9008 59096 37.1 26 59 0 1/20/89 3850 3850 63764 35.8 30 41 0 1/21/89 51 51 63797 34.5 20 33 .0 1/22/89 0 0 63797 32.2 18 46 .0 1/22/89 0 0 63797 32.2 18 46 .0 1/22/89 0 0 63797 32.2 18 46 .0 1/22/89 9010 9010 8120 84.9 24 61 .0 1/26/89 7387 7387 7677 104287 36.1 38 58 .1 1/28/89 9131 9131 113418 35.6 29 53 .0 1/30/89 8550 8550 12267 35.5 42 56 .0 1/31/89 8854 854 13121 35.9 31 58 .0 2/ 1/89 334 1349827 36.4 <td></td>													
1/20/89 3850 3850 63746 35.8 30 41 0 $1/22/89$ 00 63797 34.5 20 33 0 $1/22/89$ 00 63797 32.2 18 46 0 $1/25/89$ 8395 8395 72192 36.1 25 55 0 $1/25/89$ 8112 8121 81212 35.2 41 46 0 $1/25/89$ 7387 7387 96710 34.3 38 50 0 $1/27/89$ 7577 7577 104287 36.1 38 58 1 $1/28/89$ 91139113 113418 35.6 29 53 0 $1/30/89$ 8550 8550 8250 8550 12267 35.5 42 66 0 $2/$ $1/89$ 8372 8372 139493 37.8 40 73 0 $2/$ $1/89$ 8372 8372 139493 37.8 40 73 0 $2/$ $1/89$ 4418 4418 149207 33.8 20 20 0 $2/$ $1/89$ 2603 164776 32.8 30 40 0 $2/$ $7/89$ 7801 7801 164873 32.8 30 0 $2/$ $7/89$ 7867 7865 167763 32.4 17 26 0 $2/$ $7/89$ 7845 7845 177628 33.2 24 <													-0
1/21/89 51 51 63797 34.5 20 33 0 $1/23/89$ 0 0 63797 32.2 18 46 0 $1/23/89$ 8395 8395777 32.2 18 46 0 $1/24/89$ 9010 9010 81202 34.9 24 61 0 $1/26/89$ 7387 7387 96710 34.3 38 50 0 $1/26/89$ 7387 7787 7647 36.1 38 50 0 $1/27/89$ 7777777777777767 74287736.1 34.3 38 50 0 $1/29/89$ 299 299 113117735.2 30 62 0 $1/30/89$ 8550 8550 8550 8550 856 62 0 $1/31/89$ 8854 8372 3372 337.8 40 73 0 $2/2/89$ 337.4 334 134172735.7 33.2 27 33.0 0 $2/2/89$ 4418 4418 149207 33.8 20 32 0 $2/2/89$ 0 0 14920733.3 32.8 30 0 0 $2/2/89$ 78657865 1570723.3 32.8 30 0 0 $2/7/89$ 7801783 $16877633.32240.002/7/897865786515707233.3222.4172602/10/890016978316350$													
1/22/89006379732.21846.0 $1/23/89$ 839583957219236.12555.0 $1/24/89$ 901090108120234.92461.0 $1/25/89$ 812181218932335.24146.0 $1/25/89$ 7387738775879671034.33850.0 $1/27/89$ 7577757770428736.13858.1 $1/28/89$ 9131913111341835.62953.0 $1/29/89$ 2992991971735.23062.0 $1/31/89$ 885085508550135.93158.0 $2/1/89$ 8372837213949337.84073.0 $2/2/89$ 33433413982736.43246.0 $2/4/89$ 496249624962496233.82032.0 $2/2/89$ 7861786578657307235.33252.6 $2/7/89$ 7861780116487332.83040.0 $2/2/89$ 001697831850.0 $2/10/89$ 2294229416977032.41726.0 $2/11/89$ 001697831635.0.1 $2/11/89$ 914916977032.41726.0 $2/1$													
1/23/89 8395 8395 72192 36.1 25 55 0 $1/25/89$ 9010 9010 90103 81202 34.9 24 61 0 $1/25/89$ 8121 81213 81222 34.9 24 61 0 $1/25/89$ 7577 7577 04287 36.1 38 50 0 $1/27/89$ 7577 7577 7577 04287 36.1 38 58 1 $1/28/89$ 9131 9131 9131 113113135.2 30 62 0 $1/30/89$ 8550 8550 8550 122267 35.5 42 56 0 $1/31/89$ 8854 8854 831121 35.9 31 58 0 $2/$ $1/89$ 8372 8372 139493 37.8 40 73 0 $2/$ $2/89$ 334 334 139827 36.4 38 40 0 $2/$ $2/89$ 4418 149207 33.8 20 20 0 $2/$ $2/89$ 2602 14789 36.4 32 40 0 $2/$ $4/89$ 2603 164776 32.8 30 40 0 $2/$ $2/89$ 7865 7865 17672 33.3 27 33 0 $2/$ $6/89$ 7865 7865 16476 32.8 30 40 0 $2/$ $7/89$ 2294 2294 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
1/25/89 8121 8121 89223 35.2 41 46 $.0$ $1/27/89$ 7387 7387 96710 34.3 38 50 $.0$ $1/27/89$ 7577 7577 104287 36.1 38 58 $.1$ $1/28/89$ 9131 9131 113418 35.6 29 53 $.0$ $1/29/89$ 299 299 113717 35.2 30 62 $.0$ $1/30/89$ 8550 8550 8550 122267 35.5 42 56 $.0$ $1/31/89$ 8854 8854 13121 35.9 31 58 $.0$ $2/189$ 334 334 139827 36.4 38 64 $.0$ $2/2/89$ 334 334 139827 36.4 38 64 $.0$ $2/4/89$ 4418 4418 4418907 33.8 20 32 $.0$ $2/5/89$ 0 0 149207 33.3 27 33 $.0$ $2/6/89$ 7865 7865 157072 35.3 32 252 $.6$ $2/7/89$ 7801 7801 164873 32.8 30 $.0$ $.0$ $2/9/89$ 2603 2603 26077 32.4 17 26 $.0$ $2/10/89$ 0 0 0 169783 16 35 $.0$ $2/11/89$ 0 0 169783 16 35 $.0$ $2/11/89$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/25/89						8121						
1/27/89 7577 7577 104287 36.1 38 58 .1 $1/28/89$ 91319131113418 35.6 29 53 .0 $1/30/89$ 299 299 299 13717 35.2 30 62 .0 $1/31/89$ 8550 822267 35.5 42 56 .0 $2/189$ 8372 8372 13121 35.9 31 58 .0 $2/2/89$ 334 334 139827 36.4 38 64 .0 $2/3/89$ 4962 4462 4962 144789 36.4 32 46 .0 $2/4/89$ 4418 4418 149207 33.8 20 32 .0 $2/5/89$ 00 149207 33.3 27 33 .0 $2/6/89$ 7865 7865 157072 35.3 32 26 .0 $2/7/89$ 7801 7801 164873 32.8 30 40 .0 $2/8/89$ 2603 2603 167476 32.8 23 40 .0 $2/10/89$ 0 169783 16 35 .0.0 $2/11/89$ 0 0 169783 20 47 .0 $2/11/89$ 7845 7845 177628 33.2 24 32 .2 $2/11/89$ 8425 8425 195202 35.6 45 67 .1 $2/11/89$ 7845 7845 17628 33.2 2								7387	96710				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										36.1	38		
1/30/89 8550 8550 122267 35.5 42 56 0 $1/31/89$ 8854 8854 131121 35.9 31 58 0 $2/$ $1/89$ 8372 8372 139493 37.8 40 73 0 $2/$ $2/89$ 334 334 139827 36.4 38 64 0 $2/$ $2/89$ 334 334 139827 36.4 32 46 0 $2/$ $4/89$ 4962 4962 144789 36.4 32 46 0 $2/$ $4/89$ 4418 4418 149207 33.8 20 32 0 $2/$ $5/89$ 0 0 149207 33.8 20 32 0 $2/$ $6/89$ 7865 7865 157072 35.3 32 52 $.6$ $2/$ $7/89$ 7801 7801 164873 32.8 30 40 0 $2/$ $9/89$ 2294 2294 169770 32.4 17 26 0 $2/10/89$ 0 0 0 169783 18 50 0 $2/11/89$ 0 0 0 1697783 22 432 22 $2/14/89$ 9149 9149 186777 34.2 34 53 55 $2/15/89$ 7904 7904 203106 34.6 32 47 0 $2/18/89$ 0 0 0 02										35.6	29		
1/31/89 8854 8854 131121 35.9 31 58 0 $2/1/89$ 8372 8372 139493 37.8 40 73 0 $2/2/89$ 334 139827 36.4 38 64 0 $2/3/89$ 4962 4962 14789 36.4 32 46 0 $2/4/89$ 4418 4418 149207 33.8 20 32 0 $2/5/89$ 0 0 149207 33.3 27 33 0 $2/6/89$ 7865 7865 157072 35.3 32 52 6 $2/7/89$ 7801 7801 164873 32.8 30 40 0 $2/9/89$ 2204 2294 169770 32.4 17 26 0 $2/10/89$ 13 13 169783 16 35 0 0 $2/11/89$ 0 0 169783 18 50 0 $2/12/89$ 9149 9149 186777 34.2 34 53 52 $2/15/89$ 8425 195202 35.6 45 67 1 $2/16/89$ 7904 7904 203106 34.6 32 40 0 $2/18/89$ 0 0 0 206282 32.6 28 37 0 $2/18/89$ 0 0 0 206282 32.6 28 37 0 $2/19/89$ 8799 8799 23995 <td></td> <td>62</td> <td></td>												62	
2/ 1/89 8372 8372 139493 37.8 40 73 0 $2/$ 2/89 334 334 139827 36.4 38 64 0 $2/$ 3/89 4962 4962 14789 36.4 32 46 0 $2/$ 4/89 4418 4418 149207 33.8 20 32 0 $2/$ 5/89 0 0 149207 33.3 27 33 0 $2/$ 6/89 7865 7865 157072 35.3 32 52 6 $2/$ 7/89 7801 7801 164873 32.8 30 40 0 $2/$ 8/89 2603 2603 167476 32.8 23 40 0 $2/$ 9/89 2294 2294 169770 32.4 17 26 0 $2/10/89$ 13 13 167833 16 35 0 0 $2/11/89$ 0 0 169783 18 50 0 $2/11/89$ 9149 9149 186777 34.2 34 53 52 $2/15/89$ 8425 8425 195202 35.6 45 67 1 $2/16/89$ 0 0 0 0 0 206282 32.6 23 51 $2/18/89$ 0 0 0 0 0 0 206282 32.6 23 51 0 $2/18/89$ 0 0 0 0 0 0 206282 </td <td></td>													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0
2/3/89 4962 4962 144789 36.4 32 46 0 $2/4/89$ 4418 4418 149207 33.8 20 32 0 $2/5/89$ 0 0 149207 33.3 27 33 0 $2/6/89$ 7865 7865 157072 35.3 32 52 6 $2/7/89$ 7801 7801 164873 32.8 30 40 0 $2/8/89$ 2603 2603 167476 32.8 23 40 0 $2/9/89$ 2294 2294 169770 32.4 17 26 0 $2/10/89$ 13 13 169783 16 35 0 $2/11/89$ 0 0 169783 20 47 0 $2/11/89$ 7845 7845 177628 33.2 24 32 22 $2/14/89$ 9149 9169773 34.2 34.2 35 55 $2/15/89$ 8425 8425 195202 35.6 45 67 1 $2/16/89$ 7904 7904 203106 34.6 32 42 33 $2/17/89$ 0 0 206282 32.6 37 0 $2/18/89$ 0 0 206282 30 54 0 $2/20/89$ 8914 8914 215196 32 51 0 $2/21/89$ 8799 8799 229983 36.0 41 46 1.1 <td></td>													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/10/89												
2/12/89001697832047.02/13/897845784517762833.22432.22/14/899149914918677734.23453.52/15/898425842519520235.64567.12/16/897904790420310634.63242.32/17/89317631762062822351.02/18/89002062823054.02/20/89891489142151963251.02/21/89879987992239953952.12/22/895088508822908336.041461.1	2/11/89						0						
2/13/897845784517762833.22432.22/14/899149914918677734.23453.52/15/898425842519520235.64567.12/16/897904790420310634.63242.32/17/893176317620628232.62837.02/18/89002062822351.02/19/89002062823054.02/20/89891489142151963251.02/21/89879987992239953952.12/22/895088508822908336.041461.1							-						
2/14/899149914918677734.23453.52/15/898425842519520235.64567.12/16/897904790420310634.63242.32/17/893176317620628232.62837.02/18/89002062822351.02/19/89002062823054.02/20/89891489142151963251.02/21/89879987992239953952.12/22/895088508822908336.041461.1										33.2	24		.2
2/15/89 8425 8425 195202 35.6 45 67 .1 2/16/89 7904 7904 203106 34.6 32 42 .3 2/17/89 3176 3176 206282 32.6 28 37 .0 2/18/89 0 0 206282 23 51 .0 2/19/89 0 0 206282 30 54 .0 2/20/89 8914 8914 215196 32 51 .0 2/21/89 8799 8799 223995 39 52 .1 2/22/89 5088 5088 229083 36.0 41 46 1.1										34.2	34		.5
2/16/89 7904 7904 203106 34.6 32 42 .3 2/17/89 3176 3176 206282 32.6 28 37 .0 2/18/89 0 0 206282 23 51 .0 2/19/89 0 0 206282 30 54 .0 2/20/89 8914 8914 215196 32 51 .0 2/21/89 8799 8799 223995 39 52 .1 2/22/89 5088 5088 229083 36.0 41 46 1.1								8425	195202	35.6	45	67	.1
2/18/89 0 0 206282 23 51 .0 2/19/89 0 0 206282 30 54 .0 2/20/89 8914 8914 215196 32 51 .0 2/21/89 8799 8799 223995 39 52 .1 2/22/89 5088 5088 229083 36.0 41 46 1.1												42	.3
2/19/89 0 0 206282 30 54 .0 2/20/89 8914 8914 215196 32 51 .0 2/21/89 8799 8799 223995 39 52 .1 2/22/89 5088 5088 229083 36.0 41 46 1.1										32.6			.0
2/20/89 8914 8914 215196 32 51 .0 2/21/89 8799 8799 223995 39 52 .1 2/22/89 5088 5088 229083 36.0 41 46 1.1								Q	206282				
2/21/89 8799 8799 223995 39 52 1 2/22/89 5088 5088 229083 36.0 41 46 1.1								0	206282				
2/22/89 5088 5088 229083 36.0 41 46 1.1													
2 (27 (20								8799	223995	-			
4737 4737 253622 55.6 20 33 .2													
	2/23/09						4759	4759	233622	33.6	20	33	.2

129

Preceding page blank

No. of-				Lineat	Cracki	ng, i	 n		•••••
Passes	137	141	145	149	153	157	161	165	Avg
0 133282 165717 209354 233622	0 44 227 427 576	0 0 0 21	0 0 24 89	0 0 39 135	0 0 8 32 114	0 0 43 290	0 26 70 206 1054	0 0 22 119 958	0 9 41 111 405
No. of	C	racking	and	Patchi	ng, sq.	ft/	1000	sq. ft	•••
Passes	137	141	145	149	153	157	161	165	Avg
0 133282 165717 209354 233622	0 0 40 220 255	0 0 0 0 0	0 0 0 0	0 0 0 1	0 0 0 0 1	0 0 1 126	0 0 1 15 569	0 0 18 556	0 5 32 189
	0 133282 165717 209354 233622 No. of Passes 0 133282 165717 209354	Passes 137 0 0 133282 44 165717 227 209354 427 233622 576 Cr No. of	Passes 137 141 0 0 0 133282 44 0 165717 227 0 209354 427 0 233622 576 21 Cracking No. of 0 Passes 137 141 0 0 0 133282 0 0 165717 40 0 209354 220 0	Passes 137 141 145 0 0 0 0 0 133282 44 0 0 165717 227 0 0 209354 427 0 24 233622 576 21 89 Cracking and No. of Passes 137 141 145 0 0 0 0 0 133282 0 0 0 0 165717 40 0 0 209354 220 0 0	No. of O <td>No. of Passes 137 141 145 149 153 0 0 0 0 0 0 0 0 133282 44 0 0 0 0 165717 227 0 0 0 8 209354 427 0 24 39 32 233622 576 21 89 135 114 Cracking and Patching, sq. No. of Passes 137 141 145 149 153 0 0 0 0 0 0 0 133282 0 0 0 0 0 165717 40 0 0 0 0 209354 220 0 0 0 0</td> <td>No. of Passes 137 141 145 149 153 157 0 0 0 0 0 0 0 0 0 133282 44 0 0 0 0 0 165717 227 0 0 0 8 0 209354 427 0 24 39 32 43 233622 576 21 89 135 114 290 Cracking and Patching, sq. ft / No. of Passes 137 141 145 149 153 157 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 133282 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>Passes 137 141 145 149 153 157 161 0</td> <td>No. of 0<!--</td--></td>	No. of Passes 137 141 145 149 153 0 0 0 0 0 0 0 0 133282 44 0 0 0 0 165717 227 0 0 0 8 209354 427 0 24 39 32 233622 576 21 89 135 114 Cracking and Patching, sq. No. of Passes 137 141 145 149 153 0 0 0 0 0 0 0 133282 0 0 0 0 0 165717 40 0 0 0 0 209354 220 0 0 0 0	No. of Passes 137 141 145 149 153 157 0 0 0 0 0 0 0 0 0 133282 44 0 0 0 0 0 165717 227 0 0 0 8 0 209354 427 0 24 39 32 43 233622 576 21 89 135 114 290 Cracking and Patching, sq. ft / No. of Passes 137 141 145 149 153 157 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 133282 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 133282 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Passes 137 141 145 149 153 157 161 0	No. of 0 </td

Table 56. Lane 2, section 4 cracking history.

Table 57. Lane 2, section 4 rutting history.

.

••

.

No. of	*****			Rut	Depth	, in			
Passes	137	141	145	149	153	157	161	165	Avg
0	.00	.00	.00	.00	.00	00			
45705	.12	.06							.00
81596	.14	.08							.06
133282	.18	.08							.08
165717	.20								.10
190070									.12
233622									.14
	0 45705 81596 133282 165717	Passes 137 0 .00 45705 .12 81596 .14 133282 .18 165717 .20 190070 .37	Passes 137 141 0 .00 .00 45705 .12 .06 81596 .14 .08 133282 .18 .08 165717 .20 .10 190070 .37 .10	Passes 137 141 145 0 .00 .00 .00 45705 .12 .06 .06 81596 .14 .08 .08 133282 .18 .08 .10 165717 .20 .10 .12 190070 .37 .10 .12	No. of	No. of Passes 137 141 145 149 153 0 .00 .00 .00 .00 .00 .00 45705 .12 .06 .06 .10 .06 81596 .14 .08 .08 .14 .08 133282 .18 .08 .10 .14 .08 165717 .20 .10 .12 .18 .08 190070 .37 .10 .12 .18 .12	Passes 137 141 145 149 153 157 0 .00 .00 .00 .00 .00 .00 .00 45705 .12 .06 .06 .10 .06 .02 81596 .14 .08 .08 .14 .08 .04 133282 .18 .08 .10 .14 .08 .06 165717 .20 .10 .12 .18 .08 .08 190070 .37 .10 .12 .18 .12 .08	No. of Passes 137 141 145 149 153 157 161 0 .00 .00 .00 .00 .00 .00 .00 .00 45705 .12 .06 .06 .10 .06 .02 .00 81596 .14 .08 .08 .14 .08 .04 .02 133282 .18 .08 .10 .14 .08 .04 .02 145717 .20 .10 .12 .18 .08 .08 .04 190070 .37 .10 .12 .18 .08 .06	No. of Passes 137 141 145 149 153 157 161 165 0 .00 .

Table 58. Lane 2, section 4 PSI history.

Date		Siope Variance 0.000001	Avg Rut Depth in	Craking and Patching sq ft/1000 sq ft	PSI									
1/ 5/89 1/18/89 1/25/89 2/ 1/89 2/ 8/89 2/15/89 2/27/89	0 44407 81202 131121 164873 186777 233622	2.57 3.49 3.08 7.82 31.63 120.64 201.80	.00 .06 .08 .10 .12 .14 .33	.0 .0 .0 5.1 32.0 189.0	3.97 3.78 3.85 3.21 2.10 .96 .34									

Table 59. Lane 2, section 4 NDT data.

.

	Data of Test Section Centerline										Data From Out of Wheelpath														
D1		Pvmt	Surface Deflection, mils											Surface Deflection, mils											
Surf	f Pvmt	Load		Radial Offset, in			L .			5	Pvmt Surf Temp			Radial Offset, in					_						
	Sta	•	•	lbs	.00	8.30	15.40	20.10	31.90	50.0	SN	ksi	F	-	lbs							50.0	SN	E, ksi	
2/ 7/88	0	137	60	48	11775	16.17	14.07	12.83	10.67	7.63	4.43	5.14	18.6												
		140	62	48	12034	15.6/	13.90	12.40	10.70	7.97	4.70	5.40	19.7												
		144 145	61 60	40	12005	15.30	13.55	11.97	10.57	7.83	4.60	5.50	20.1												
		147		40	12420	15.10	12.40	11 77	10.55	7.80	4.60	5.46	20.0	60	49	11295	16.00	14.1	3 12	2.53 1	11.10	8.20	4.70	5.08	18.3
		149	60	40	12565	15.05	13.50	12 07	10.57	7.80 7.90	4.60	5.52	20.2												
		152	59	48	12565	15 67	14 10	12.07	11 00	8.10	4.03	5.40													
		153	61	48	12565	15.93	14.33	12.57	11.13	8.23	4.75	5.36													
		154	60	48	12737	16.13	14.43	12.47	11.30	8.30	4.05	5 36	10.5												
		157	60	48	12737	16.67	14.80	13.03	11.70	8.70	5.20	5.26	19.1	60	49	11192	15 03	17 0	3 12	20 1	1 07	8 20	/ 20	E 0/	40 -
		158	60	48	12565	16.63	14.80	13.17	11.70	8.70	5.20	5.24	19.0		47		12.75	13.7	5 12		1.05	0.20	4.00	5.00	10.4
		161	58	48	13732	17.37	15.30	13.40	12.00	8.87	5.30	5.36	19.5												
		164	60	48	11020	14.93	13.03	11.70	10.27	7.57	4.47	5.12	18.5												
2/ 2/89 1	39493	137	59	53	11501	36.70	29.53	27.03	20.27	14.00	7.50	3.48	11.4												
		140	60	- 54	11432 .	28.83	26.30	21.87	19.07	13.03	7.13	3.88	13.1												
		144	54	54	11363	29.07	25.37	22.53	18.97	13.33	7.03	3.84	12.9												
		145	59	55	11501	30.83	26.87	23.30	19.80	13.43	7.30	3.76	12.6	64	72	10951	18.90	17.0	3 15	.33 1	3.30	9.80	5.63	4.62	16.3
		147									_														
		149	60							13.53															
		152 153	61 61	0U	11157	30.37	20.23	23.00	19.70	13.83	7.13	3.74	12.5												
		155	61	61	11157	30.37	27.40	22.13	10.70	13.30 12.93	6.97	3.70	12.3												
		157	61	20 AA	10086 3	30.40	27.00	23.33	19.30	14.40	7.03	5.14	12.5			11000	40 /7								
		158	61	68	11157	30.83	28 00	23.30	20.40	14.23	7.57	3.00	12.2	04	73	11089	19.45	17.6	5 15	.57 î	5.90	0.20	5.77	4.58	16.2
		161	63	69	11102	32.80	28 80	24 50	20.53	14.43	7 80	2.12	12.4												
		164	62	71	11157	33.07	30.10	25.23	22.40	15.53	7 00	3 61	11 0												
											1.70	5.00													
2/27/89 23	33022	137	10		4/70 -		~~ ~~	~~ ~~																	
		140	48	40	11672 2	50.07	27.13	22.70	20.03	14.20	8.07	3.84	12.9												
		144 145	49 49	40	11501 3	52.20	27.40	23.45	19.97	14.47	7.97	3.80	12.8							-					
		145	47	41	11209 3	52.91	20.37	24.21	20.90	14.13	8.03	3.66	12.2	45	45	11398	19.40	17.67	7 16	.20 14	4.23 1	0.77	6.37	4.64	16.4
		147	47	44	1/20 2	1 / 00	20 10	21. 20	21 27	15.20	e / ^	7 5/ 4													
		152	47	41	1632 3	17.70	20 27	24.20	21.27	16.10	0.40	3.54	11.0												
		153	48	41	1501 3	13.13	30.40	25.33	22.07	15 23	8.30														
		154	49	42 1	1295 3	5.90	32.30	26.37	21.47	14.70		3.48 1													
		157	51							19.17				45	46	11569	19.90	18.20	16	.43 14	6.93 1	1 43	6 97	6 62	16 2
		158	49	42 1	1535 4	1.37	41.13	27.93	34.10	17.03	7.63	3.30 1	0.6					.0.20					0.71	4.06	10.3
		161	49	43 1	0883 5	8.37	51.60	40.57	26.37	13.53	7.87	2.76	8.3												
		164	52	43 1	1123 6	60.63 ·	48.00	31.33	24.17	16.23	8.63	2.74	8.2												

131

.

. •

ļ

REFERENCES

- 1. Road and Bridge Specifications, July, 1, 1982, Virginia Department of Highways and Transportation, Richmond, VA, 1982.
- 2. Anderson, D.A., Kilareski, W.P., and Siddiqui, Z., *Pavement Testing Facility Design and Construction*, Report No. FHWA-RD-88-059, Federal Highway Administration, Washington, DC, 1987.
- NCHRP 1-26 Calibrated Mechanistic Structural Analysis Procedures for Pavements, National Cooperative Highway Research Program, Washington, DC, March, 1990.
- 4. Witczak, M., and Uzan, J., *The Universal Airport Design System: Report I. Granular Material Characterization*, The University of Maryland, College Park, MD, September, 1988.
- 5. AASHTO Guide for Design of Pavement Structures, 1986, American Association of State Highway And Transportation Officials, Washington, DC, 1986.
- 6. Strain Measurements in Bituminous Layers, Organisation for Economic Cooperation and Development, Paris, 1985.
- Anderson, D.A., Sebaaly, P., Tabatabaee, N., Bonaquist, R., and Churilla, C., Pavement Testing Facility - Pavement Performance of the Initial Two Test Sections, Report N. FHWA-RD-88-060, Federal Highway Administration, Washington, DC, 1988.
- 8. Sebaaly, P., Tabatabaee, N., and Scullion, T., *Instrumentation for Flexible Pavements*, Report No. FHWA-RD-89-084, Federal Highway Administration, Washington, DC, 1989.
- 9. Bonaquist, R., Surdahl, R., and Mogawer, W., *Pavement Testing Facility Effects* of *Tire Pressure on Flexible Pavement Response and Performance*, Report No., FHWA-RD-89-123, Federal Highway Administration, Washington, DC, 1989.
- 10. The AASHO Road Test, Report 5, Highway Research, Highway Research Board, Publication No. 954, National Academy of Sciences - National Research Council, Washington, DC, 1962.
- 11. Yoder, E.J., and Witczak. M.W., *Principles of Pavement Design*, 2nd Edition, John Wiley and Sons, Inc., New York, 1975.